Climate Variability and worldwide migration. Current evidence and future projections

Co-auteur: Fabio Farinosi

RÉSUMÉ

The literature linking climatic drivers and migration is growing, but there is still limited evidence and substantial uncertainty on multilateral flows on a global scale. This paper fills this gap in research by projecting changes in inflows and outflows of migrants from medium-term population and climate change. We estimate a panel bilateral gravity equation for emigration rates controlling for various indicators of decadal weather averages in the origin countries. We control for temperature, precipitation, droughts, and
excess precipitation. The sample covers 100 origin and 166 destination countries for each decade from 1960 to 2010. We project bilateral changes in migration using the parameter estimates of the gravity equation, along with projections of socio-economic variables under shared socioeconomic pathways (SSP) and climate change scenarios from General Circulation Models (GCM) for various representative concentration pathways (RCPs). We find that average decadal emigration flows increase from 80 to nearly 140 million depending on the SSP, RCP and future year. Changes in migration are mainly due to population growth in the origin countries. By constraining the population of the origin countries to remain at current levels, we find that the number of climate international migrants is comparable in size to the emigration flows observed today.

S'inscrire(https://us02web.zoom.us/webinar/register/WN_guhsNUTHS0azxNEPw6kY6w)