

École Doctorale des Sciences Économiques, Juridiques, Politiques et de Gestion Centre d'Études et de Recherches sur le Développement International (CERDI) Université Clermont Auvergne, CNRS, IRD, CERDI, F-63000 Clermont-Ferrand, France

From Tax Revenue Mobilization to Financial Development: Essays on Financing for Development

Thèse présentée et soutenue publiquement le 26 Mars 2021 Pour l'obtention du titre de Docteur *ès* Sciences Économiques

Par

Ali COMPAORÉ

Sous la direction de M. Grégoire ROTA-GRAZIOSI, Professeur M. Samuel GUERINEAU, Maître de Conférences, HDR

Membres du Jury

Désiré AVOM, Professeur, Directeur du Laboratoire d'Analyse et de Recherche en Économie Appliquée (LAREA), Doyen de l'École d'Économie, Université de Dschang (Rapporteur)

Lisa CHAUVET, Professeur, Centre d'Économie de la Sorbonne (CES) Université Paris 1 Panthéon-Sorbonne (Rapportrice)

Eugénie W. H. MAIGA, Professeur, Directrice de l'Unité de Formation et de Recherche en Sciences Économiques et de Gestion, Université Norbert ZONGO (Rapportrice)

Emmanuel PINTO-MOREIRA, Docteur, Directeur du Département des économies pays de la Banque africaine de développement (Suffragant)

Grégoire ROTA-GRAZIOSI, Professeur, Directeur du CERDI, Université Clermont-Auvergne, CERDI (Directeur de thèse)

Samuel GUERINEAU, Maître de Conférences, HDR, Doyen de l'École d'Économie, Université Clermont-Auvergne, CERDI (Directeur de thèse)

	mprobation aux opinior comme propres à leur a	

À mes parents, À mes frères et sœurs, Ouzeïfa, Adama et Salamata,

Remerciements – Acknowledgments

Tout d'abord je remercie, du fond du cœur, mes directeurs de thèse, Messieurs Grégoire ROTA-GRAZIOSI et Samuel GUERINEAU, pour avoir accepté de diriger ma thèse de doctorat. Votre expertise scientifique m'a été d'une si grande utilité que je ne pourrais trouver les mots justes pour vous témoigner ma profonde gratitude et mon admiration. J'ai beaucoup apprécié de travailler sous votre direction.

J'exprime également ma profonde gratitude aux Professeurs Désiré AVOM, Lisa CHAUVET, Eugénie W. H. MAIGA, et à Monsieur le Docteur Emmanuel PINTO-MOREIRA, pour avoir généreusement accepté d'être membres de ce Jury de Thèse malgré le contexte difficile de crise sanitaire, témoignant ainsi leur intérêt pour mes travaux. Vos commentaires et suggestions permettront d'améliorer la qualité de ce travail. Aussi, Émilie Caldeira, je te dis merci.

Cette thèse doit également beaucoup au Ministère de l'enseignement supérieur, de la recherche scientifique et de l'innovation (MESRI) de mon pays, le Burkina Faso, qui au travers du Centre national de l'information, de l'orientation scolaire et professionnelle, et des bourses (CIOSPB), m'a gratifié d'un financement sur tout mon parcours universitaire, lequel a considérablement facilité son succès. Aussi, ma réussite doit énormément à la qualité des enseignements que j'ai reçu durant mon parcours universitaire ainsi qu'aux excellentes conditions de travail qu'offre le CERDI. Également au personnel administratif chaleureux et disponible, en particulier Johan, Agnès, Sandra et Martine, trouvez à travers ces lignes mes sincères remerciements. Merci beaucoup à Chantal pour la relecture et les corrections.

Un « *Big Thanks* » à Rasmané Ouédraogo pour tout ce que tu as fait et continue de faire pour moi depuis que j'ai déposé mes valises à Clermont-Ferrand. Mes remerciements à mes illustres ainés et co-auteurs, Rasmané, René Tapsoba, Moussé Sow et Mlachila Montfort avec qui j'ai beaucoup appris et pris plaisir à travailler. Merci pour vos conseils.

À mes devanciers « *les kôrôs* » du CERDI: Rélwendé Sawadogo, Hippolyte Balima, Éric Dago, Éric Kéré, Axelle Kéré (« *maman Guiao* »), Yann Tapsoba, Ababacar Gueye, Alexandra Tapsoba,

Constantin Compaoré, Aïssata Coulibaly, merci pour tous nos échanges et recevez ici ma pensée amicale.

Aussi une pensée sympathique pour mes promotionnaires doctorants et étudiants de Magistère, Nestor P. Sawadogo (« m'dawa, le SG»), Jocelyn Okara (« le vieux père Assi »), Kady S. Keïta, Yashmina Nebié, Kodjo Adandohoin, Cornélie Ayémonna, Hugues Champeaux, Pierre Lesuisse, Lucas Guichard, Épiphane Assouan, Oulimata Ndiaye, et Issa Sanou. Je pense aussi à tous mes camarades doctorants du CERDI, Alou A. Dama (« mon type »), Fayçal Sawadogo, Hamid Silue, Moulaye Bamba, Jean-Marc Atsebi, Ibrahim Nana, Abdoul-Hakim Wandaogo (« oustaz »), Mahamady Ouédraogo (« le sage »), Ismaël Ouédraogo, Maïmouna Barro, Macoura Doumbia, Humaïra Pasha, Muhammad Adil, Mohamed Boly, Aïcha Sanou, Aale Raza Rizvi, Muhammad Naseem Nasar, Fatima Rizvi, Yoro Diallo, Arouna Diallo (« le général »), Aimé Okoko, Naïmatou Ouédraogo, Harouna Kinda (« chef de protocole »), Mouhamed Zerbo, Abdramane Camara, et Achille K. Sanou. Un big up à mes amis et promotionnaires de l'Université Norbert Zongo (ex-Université de Koudougou) en particulier Diallo A. Cheick, B. Louis-Joël Diendéré, et Dieudonné W. Tondé, Hamed Ouédraogo, la GAF, et un coucou à Rachelle. Aussi, une pensée pour mes collègues d'Abidjan du Département de Recherche de la Banque Africaine du Développement (BAD) notamment Françis Kemeze, Patrick Mabuza, Amadou Boly, Chuku Chuku, Zackary Séogo, Lacina Balma, Linguère Mbaye, Betty Camara, Eve Kra et ceux de Washington à la Banque Mondiale (IFC), en particulier Hassan Kaleem et Kalim Sha.

Je ne saurais passer sous silence les membres de l'Association des Burkinabè de Clermont-Ferrand et leurs amis (ABUC) dont j'ai eu l'honneur d'être le président. En particulier Edgard et Sonia Béré, Serge et Béatrice Koblavi, Babou Bazié, Alassane et Aïssata Drabo, Hamadoun Tall, Yassia Gansonré, Sylvestre Sidibé, Inès Ouédraogo, Inès et Simon Zanga, Guy Ouédraogo, Etienne Savadogo, Michel et Valérie Ouédraogo, Bouraïma Coulibaly, Emmanuel et Annick Tiéba (à Aurillac), Pierre Noël Sanou, Francis Kaboré (« yãab rãmb néeda »), Thierry Ouédraogo et Lionnel Bontogo (« mes Ministres de la Justice ») et Cheick Rachide Ouédraogo (« mon p'tit neveu »), Nourat Guigma, Carolle Sandamba, et Edwige Bayili pour ne citer qu'eux, merci pour la fraternité et l'amitié qui ont constitué et constituent toujours l'essence de nos relations cordiales.

Enfin, je ne saurais taire le soutien multiforme et infaillible de ma famille. Je veux rendre un hommage tout particulier à mes parents, mes frères et à ma sœur, qui n'ont jamais douté de moi, et qui, malgré la distance, m'ont toujours témoigné de leur présence, je vous dis infiniment merci.

List of acronyms

AEs Advanced Economies

ATI Addis Tax Initiative

BEPS Base Erosion and Profit Shifting

CIT Corporate Income Tax

COW Correlates of Wars

DPS Dynamic Panel Specification

DRM Domestic Revenue Mobilization

EC European Commission

ECA Europe and Central Asia

EMEs Emerging Markets Economies

EU European Union

FAS Financial Access Survey

FE Fixed Effect

GCC Gulf Cooperation Council

GDP Gross Domestic Product

GFS Government Finance Statistics

GFSM Government Finance Statistics Manual

GMM Generalized Method of Moments

GTD Global Terrorism Database

HIC High-Income Countries

ICTD International Centre for Tax and Development

IMF International Monetary Fund

LAC Latin America and the Caribbean

LIC Low-Income Countries

LIDCs Low-Income Developing Countries

LMIC Lower Middle-Income Countries

MDGs Millennium Development Goals

MENA Middle East and North Africa

MEPV Political Terror Scale

MFIs Microfinance Institutions

MLE Maximum Likelihood Estimator

NA North America

ODA Official Development Assistance

OECD Organization for Economic Co-operation and Development

PIT Personal Income Tax

PSC Panel Specific Correlation

PTS Political Terror Scale

PWT Penn World Table

RE Random Effects

SA South Asia

SDGs Sustainable Development Goals

SFA Stochastic Frontier Analysis

SSA Sub-Saharan Africa

TADAT Tax Administration Diagnostic Tool

TP Transfer Pricing

TPAF Tax Policy Assessment Framework

TTA Tax Technical Assistance

UCDP Uppsala Conflict Data Program

UMIC Upper Middle-Income Countries

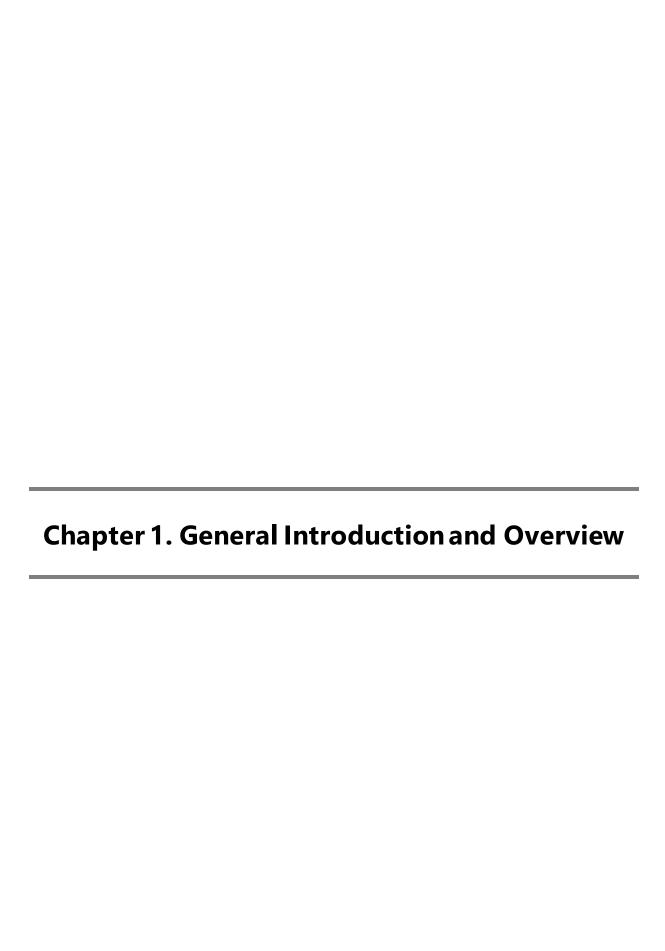
UNU-WIDER United Nations University World Institute for Development Economics

Research

US United States (of America)

USAID United States Agency for International Development

VAT Value-Added Tax


WBG World Bank Group

WDI World Development Indicators

WEO World Economic Outlook

Table of Contents

Chapter 1. General Introduction and Overview1
Chapter 2. Tax Effort in Sub-Saharan African Countries: Evidence from a New Dataset19
Chapter 3. Fiscal Resilience Building: Insights from a New Tax Revenue Diversification Index
Chapter 4. Access-for-all to Financial Services: Non-resources Tax Revenue-harnessing Opportunities in Developing Countries96
Chapter 5. The Impact of Conflicts and Political Instability on Banking Crises in Developing Countries
General Conclusion159
References165
Contents

The exploding financing needs in developing countries: the paramount role of taxation...

Financing structural transformation investments in developing countries necessary to embark on a sustainable development path is at the center stage of the international debate in recent years. Developing countries face huge development challenges. Yet, financial resources are quite limited with tight fiscal space. In addition, the ongoing global health crisis (*i.e.*, Covid-19 pandemic) jeopardizing the hard-won development gains achieved over the past years exacerbates financing needs and the pressure on public finance to mitigate economic and health damages. The World Bank estimates at about \$2.5 trillion annually, the financing gap for achieving the Sustainable Development Goals for developing countries. A viable tax system allowing proper taxation would undoubtedly constitute an important source to finance this gap.

"[...] Until someone comes up with a better idea, taxation is the only practical means of raising the revenue to finance government spending on the goods and services that most of us demand". (Tanzi and Zee, 2001)

Taxation is compulsory levies on individuals as well as on corporations imposed by governments. Historically, the main and primary purpose of taxation is to raise revenue to finance public spending and services provision. The bulk of taxes are basically collected to ensure the welfare of taxpayers as a whole. Therefore, the individual taxpayer's liability is independent of any specific compensation, except for a few taxes (McLure *et al.*, 2019). For instance, payroll taxes will benefit the taxpayer since they are levied on labor income to finance social security programs, medical payments, retirement benefits, etc. Likewise, fuel taxes are imposed to finance the construction and maintenance of road infrastructure that would benefit no other than road users.

However, the role of taxation could not be conceptually limited to the only purpose of public expenditure. Indeed, in addition, to its financial purpose, taxation was also assigned a role related to social policy to promote *social welfare*. More precisely, it serves as a regulating factor to lessen inequalities in the distribution of national income and wealth. Last but not the least, the role of taxation in modern economies is that of maintaining economic stability through the

implementation of tax policy, to promote price stability and high employment (McLure *et al.*, 2019).

In the literature, taxation is widely accepted as an important pillar of state erection. The IMF (2011) asserts that taxation is a defining feature of state power, making its improvement a key aspect of state-building. In the same vein, Junquera-Varela *et al.* (2017) emphasize the paramount role of taxation as a plank of state-building and that, through different ways. In fact, as governments rely on taxes and on the prosperity of the people, they have a strong incentive to promote economic growth and engage with the public. This dependence leads to accountability and responsiveness on the part of the state. Moreover, implementing taxation opens avenues to introduce good practices within different parts of government (Junquera-Varela *et al.*,2017). Indeed, through the introduction of a unique taxpayer identification number, tax systems build databases that are essential for broader economic and administrative management.

"Beards, boots, beehives, candles, nuts, hats, horses, chimneys, water – Tsar Peter taxed them all. But he is still styled 'The Great' in modern histories of Russia, perhaps because of the mighty works his taxes produced." James Harvey Robinson, ed., Readings in European History, 2 Vols. (Boston: Ginn and Company., 1904-1906), Vol. II: From the opening of the Protestant Revolt to the Present Day, pp. 303-312.

To some extent, taxation has also contributed to the establishment of the politico-institutional power in modern economies (Levi, 1981, 1989; Brewer, 1989; Hoffman and Rosenthal, 1997). According to O'Brien (2005) for instance, the supremacy of British naval over nearly three hundreds of years was rooted in the superior power to raise taxes. In addition, Hoffman and Rosenthal (1997) in their theoretical model to study warfare and taxation in modern Europe consider that a country ruler's decision to join in a fight or to attack another country depends on its capacity to mobilize resources from taxation. Moreover, the "new fiscal sociology" literature emphasizes that implementing taxation fosters state building both by providing a focal point for bargaining between the state and citizenry and through the development of high-quality institutions for tax collection (Bräutigam et al., 2008).

An increasing interest in enhancing domestic revenue mobilization (DRM) in developing countries over recent years: tax revenue as sustainable source of development financing

Since the adoption of the 2030 Agenda, mobilizing sufficient and durable financial resources has been the priority for the international community. While the major source of development financing in developing countries (DCs) has historically been international development assistance provided by development finance institutions (DFIs), a flourishing literature underscores the highly volatility of official development assistance (ODA) which compromises its efficacy (Bulíř and Hamann, 2003; Hudson and Mosley, 2008; Kharas, 2008; Chauvet and Guillaumont, 2009; Hudson, 2015, Afawubo and Mathey, 2017). Empirical studies at both macro and micro level highlight that volatile ODA hampers economic growth by affecting the level as well as the composition of investment, and the fiscal planning (Kharas, 2008). ODA, in addition to fluctuate over time, is finite and therefore, a chronic and substantial dependence would imply serious uncertainties for recipient countries regarding the sustainability of government expenditures and its implications for future economic growth and development (Junquera-Varela et al., 2017).

Alternatively, to the ODA, international financial markets also represent an important source for raising consistent financial resources to meet financing needs. This option however is still marginally tapped by developing economies. As stressed by the IMF (2003), accessing international capital markets requires favorable domestic and external conditions including, among others: good macroeconomic stability and performance, fiscal discipline, good external debt management, political stability. Developing countries do not always achieve these conditions.

Moreover, the recent collapse in commodity prices, mainly for oil, has led to colossal losses in export revenues and serious fiscal constraints in resource-rich countries. A vast strand of the empirical literature brightly evidenced the adverse effects of negative commodity prices shocks on various economic variables (see *e.g.*, Deaton and Miller 1995; Dehn 2000; Brückner and Ciccone 2010; Arezki and Brückner 2012; Fabrizio, 2012; Arezki and Ismail 2013; Knop and Vespignani, 2014; Kinda *et al.*, 2016, Mlachila and Ouedraogo, 2018; Eberhardt and Presbitero, 2018; Sekine and Tsuruga, 2018) underscoring the limitations of extractive revenues dependence.

Hence, domestic resource mobilization, more particularly tax revenues,¹ rightly appear to be not only the remaining alternative tool for generating revenues, but also the reliable and sustained sources of government revenues to support sustained and inclusive economic development.

Taxes represent one of the most important sources of government revenue in modem economies (McLure *et al.*, 2019). Over recent decades, taxation in developing countries has been receiving important and increasing attention among academics and policymakers. This particular focus on taxation in developing economies results from *inter alia*, the rapid debt accumulation over the past fifty years in emerging economies and developing countries (Kharas, 2020; Kose *et al.*, 2020; Koh *et al.*, 2020; World Bank, 2020), the decrease and the volatility in the international development aid flows, and most importantly, the wide recognition² (*e.g.*, the 2010 G-20 Summit, the 2015 Financing for Development Conference: Addis Tax Initiative (ATI), and the 2017 new European Consensus on Development, etc.) that enhancing domestic tax revenue mobilization in developing countries constitutes a key tool to generate revenues for a sustainable and inclusive economic development financing.

The relation between taxation and growth, and to a broader extent, economic development, has been subject to a substantial literature (*e.g.*, Levi 1988; Myles, 2000; Bleaney *et al.*, 2001; Yakita, 2003; Johansson *et al.*, 2008; Bräutigam, 2008; Bräutigam, Fjeldstad, and Moore 2008; Besley and Persson, 2009-2010; IMF, 2011; Gale and Samwick, 2014; Aghion *et al.*, 2016; Gaspar *et al.*, 2016a, 2016b, Jaimovich and Rebelo, 2016,). Empirical works stressed out that taxes promote economic growth and development. Taxes revenues lead to improved development when they are fully translated into productive and beneficial public spending (Junquera -Varela *et al.*, 2017). Some empirical studies also infer the existence of a minimum level of the tax-to-GDP ratio that is associated with a significant acceleration in the process of growth and development. Gaspar *et al.* (2016) for instance, drawing on a contemporary database covering

¹ It is worth noting that domestic revenues sources also include non-tax revenues such as royalties and resource rents from extractive industries and, to some extent, user fees for public services, delivered by local governments (Junquera-Varela *et al.*, 2017).

² See Domestic Revenue Mobilization: Mapping Existing Research, Initiatives, and People for a summary on the increasing number of domestic tax revenue mobilization initiatives over the recent past years.

139 countries from 1965 to 2011 and a historical database for 30 advanced economies from 1800 to 1980, find evidence that countries embark to a higher growth path once their tax ratio oversteps the threshold of 12, with a per capita GDP of 7.5 percent larger after 10 years. Besides, Gaspar and Selassie (2017) assert that regarding the exploding debt levels in African countries, raising tax revenues will be the most growth-friendly way to stabilize debt. Moreover, taxation favors growth through an increase in firms' productivity. As emphasized by Gaspar and Jaramillo (2017), a well-designed tax system is conducive to greater firm productivity.

However, many developing countries are still struggling to collect sufficient tax revenues to finance their structural transformation projects. Kaldor (1963) has set a very ambitious tax revenue ratio of 25-30 percent of GDP that nations should collect to become developed countries. However, according to Coady (2018) about a third of emerging market economies and half of the low-income countries have low tax ratios –below 15 percent– which in tum result in low levels of social expenditures, scanty to carry out the most basic state functions.

International development institutions including the World Bank Group, the International Monetary Fund, the United Nations (UN), and the Organization for Economic Co-operation and Development (OECD) have committed to support and strengthen domestic tax revenue mobilization in developing countries through multiple programs including capacity building and the development of a range of efficient taxation tools (e.g., the Tax Administration Diagnostic Tools (TADATs) and the Tax Policy Assessment Framework (TPAF)³). For instance, the WBG tax engagements aim to support countries to reinforce their tax systems by facilitating the design and implementation of evidence-based tax capacity development and policy reforms with the target of 15% of GDP minimum tax revenue in all countries. The WBG is also supporting DCs in managing risks related to different tax avoidance behaviors and aggressive tax optimization, namely transfer pricing (TP) as well as tax base erosion and profits shifting (BEPS). The IMF has also long played a key role in supporting efforts to improve tax revenue mobilization and building strong, effective and fairer tax systems in developing countries, mainly through its tax technical assistance (TTA) work.

_

³ TADAT assesses the performance of countries' tax administration, while TPAF (which is WBG-IMF joint program) evaluates the performance of the tax policy.

Levels and Composition of Tax Revenue in Developing Countries: Some Stylized Facts

We extracted tax data from the updated and most complete IMF's Government Financial Statistics database (GFS, 2020). The sample covers 102 developed and developing countries⁴ over the period 1990-2018. From the panel [A] of Figure 1, it emerges that, on average, the tax ratio stands at respectively 17.7 and 25.0 in developing and developed countries.⁵ Although the tax revenue ratio has been non-stable in developing countries over the period (red line, panel [A] of Figure 1), the level has improved on average and remains below that of developed countries. For instance, over the subperiod 2000-2015, the tax revenue ratio in low-income countries increased on average by 3.5 percent of GDP and reaching 16.4 percent in 2015.

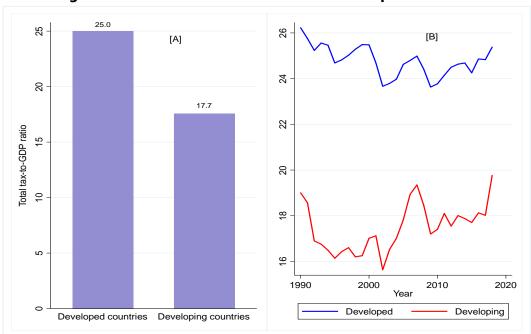


Figure 1.1. Tax Ratio and Trend: DCs Vs Developed Countries

 $Source: Authors'\ calculations\ using\ IMF's\ GFS\ (2020)$

Regarding the tax structure, while the major taxes components are income taxes and taxes and goods and services in developed economies, developing countries heavily rely on indirect taxes⁶ including mainly taxes on consumption (value-added tax, excises, general sales tax, etc.),

⁴ Country list by income group is provide in Appendix 1.1.

⁵ Note that this is a simple average, considering each country as a single observation and treating countries as the same

⁶ As a rule of thumb, indirect taxes represent, about 40 percent of total tax revenue in DCs.

followed by direct taxes, namely personal and corporate income taxes (Figure 1.2.a). The common feature in the tax composition in both developed and developing countries is the importance of taxes on final consumption, including value-added tax (VAT). VAT represents a modern tax and has been widely adopted across the world since its introduction in the 1960s. According to the IMF, 160 countries have a VAT as of 2018.⁷ Studies in the literature (*e.g.*, Tait, 1991; Le, 2003; Keen and Lockwood, 2010; Keen, 2013; Ulfier, 2014; Akitoby *et al.*, 2018; Acosta-Ormaechea and Morozumi, 2019) underscore the pivotal role of VAT in countries' tax systems. Indeed, VAT represents an important and solid source of tax revenue in developing countries and presents the advantage to be less distortionary and have the particularity to be self-enforcing (Kopczuk and Slemrod, 2006).

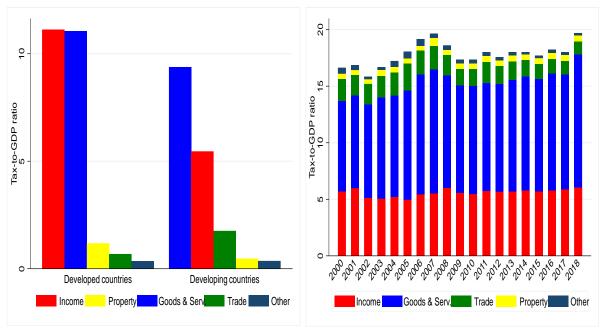
In addition to the VAT, another non-negligible source of tax revenue but which remains underexploited in DCs is property tax. Property tax is widely considered as an equitable and efficient source of raising revenue (Norregaard 2013) with no vertical tax base competition and low compliance cost on taxpayers (Bahl and Martinez-Vazquez, 2007). This tax, however, hardly raises on average less than 1 percent of GDP in developing countries (see *e.g.*, Bahl and Martinez-Vazquez, 2008), partly due to the weaknesses in the design and implementation of the tax combined with the unclear definition of property rights.

Exploring the trend in the composition of taxes in DCs (Figure 1.2.b), data reveal a change in the tax revenue structure over the period.⁸ More specifically, Figure 1.2.b depicts a decrease in trade taxes ratio, in line with the global trade liberalization process (Devarajan and Rodrik, 1989, Ostry, 1991, Wacziarg and Welch, 2008) in these countries.⁹

In addition, although the low share of property tax revenue in the GDP, the level is gradually increasing as the result of the more and more resources devoted to identifying, capturing and valuing all relevant properties and upkeeping of fiscal cadaster (Akitoby *et al.*, 2018). Last, taxes

⁷ https://www.imf.org/external/np/fad/tpaf/pages/vat.htm.

⁸ We focus on the last two decades.


⁹ Considering the whole period, trade tax ratio represented about 8 percent of GDP in the 1990s and has considerably dropped to about 2 percent of GDP as of 2018.

on goods and services and income taxes remain the most important components of total taxes revenues in DCs over the period.

Figure 1.2. Tax Revenue Structure

1.2.a. Composition

1.2.b. Change in the composition in DCs

Source: Authors' calculations using IMF's GFS (2020)

In Figure 1.3, we explore the regional disparities in tax revenue ratio in developing countries. Europe and Central Asia (ECA) is the top-performing region in terms of tax revenue mobilization followed by Sub-Saharan Africa region, while Latin America and Caribbean (LAC) countries as well as South Asian (SA) countries come to be the poor performers of the sample.

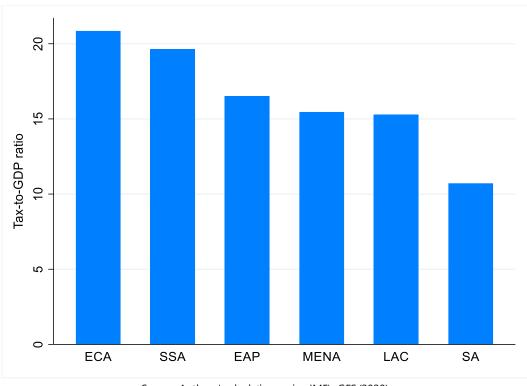


Figure 1.3. Regional Disparities (Average, 1990-2018)

Source: Authors' calculations using IMF's GFS (2020)

Why do developing countries still tax little?

While rich and extensive works in the literature explore the determinants of countries tax revenue performance (see e.g., Lotz and Morss, 1967; Chelliah et al., 1975; Leuthold, 1991; Tanzi, 1992; Stotsky and WoldeMariam, 1997; Davoodi and Grigorian, 2007; Gupta, 2007; Gordon and Li, 2009; Clist and Morrissey, 2011; Fenochietto and Pessino, 2013; Feger and Asafu -Adjaye, 2014; Balima et al., 2016; Belinga et al., 2017; Gnangnon and Brun, 2018), a parallel strand of the literature rather focuses on the hampering factors and challenges to higher tax ratios in DCs and the persisting tax gaps between advanced and developing economies (see e.g., Andic, 1973; Bahl and Bird, 2008; Bird, 2007-2008; Mascagni et al., 2014: Carnahan, 2015; Junquera-Varela et al., 2017). Countries tax capacity is intrinsically related to their structural and institutional features, including history, the sectoral composition of the economy and the politico-institutional setup. Those factors are difficult to change in the short term. As recognized by Bird (2008), countries' characteristics define their tax systems and their capacity to administer taxes. Several factors in the literature are pointed out to compromise substantial

tax revenue mobilization in DCs. First, there is persisting large share of the informal sector ¹⁰ in these countries. In fact, informality represents a central challenge to establish efficient tax system and greater tax collection in developing countries. Developing economies are mostly composed of a multitude of small and micro enterprises implying very high administrative costs to identify and to tax (Mascagni *et al.*,2014). In addition, the bulk of the workers in DCs are employed in informal enterprises and agriculture and paid in cash. As a result, it is difficult to capture the tax base relying on modern tools of direct taxation fails to yield substantial results (Tanzi and Zee, 2000). As asserted in Auriol and Warlters (2005), tax ratio gaps between DCs and advanced economies mainly explained by the weakness of direct taxation of the informal sector in DCs.

In addition, the ongoing globalization induces a strong growth in the international capital and trade flows, which exacerbates difficulties in taxing multinational companies and transnational transactions in developing countries. Globalization provides to transnational corporations, greater incentives and opportunities to develop aggressive tax optimization and abusive transfer pricing practices, as well as profits shifting (Mascagni *et al.*, 2014). This combined with the inadequate rules and laws on taxing multinational companies in DCs, as well as the weak tax administrative capacity, inevitably results in important tax revenues losses. ¹¹ Similarly, until a certain period, trade taxes (customs duties) constitute a major tax revenue source in many developing and emerging market economies despite trade liberalization (Bird, 2007; Baunsgaard and Keen, 2010). However, with the recent trade liberalization waves across the globe, DCs experienced a considerable decline in trade tax revenues leaving them with serious challenges in replacing such revenues (Baunsgaard and Keen, 2010).

Moreover, the tightness of the tax base and the less diversified tax sources coupled with generous tax exemptions are common features of tax systems in DCs impeding tax collection. The literature widely agrees that broadening the tax base is fundamental to raise significant tax revenues (Toyes, 2000; Bird and Zolt, 2003; IMF, 2005-2006; Bird, 2007-2008; IMF, 2011;

¹⁰ About 40 to 60 percent (See e.g., Schneider et al., 2010).

¹¹ About 10 percent (~US\$240 billion, annually) of losses in the global corporate income tax revenues (Junquera-Varela *et al.*, 2017).

Dabla-Norris and Lima, 2018). A broad tax base is associated for instance with lower taxation costs and economic inefficiencies, more redistribution (Heady, 2004) and less political opposition (Toye, 2000).

Furthermore, the low tax ratios in DCs is the result of low tax effort ¹²– itself related to the tax system, the level of compliance and the tax culture. Tax system comprises not only tax administration, but also the tax policy (tax laws) as defined by Slemrod and Gillitzer (2014); the tax administration plays a central role in countries' tax system. Chang *et al.* (2020) for example, recently showed that improving the practices and characteristics of tax administration is beneficial to revenue collection agencies. Drawing on the International Survey on Revenue Administration dataset, the study finds that tax performance is positively and strongly associated with the operational strength of tax administrations. Though, significant progress has been made in reforming and strengthening tax administrations in DCs, more need to be done.

Greater access to financial services in DCs: A potential canal for greater tax revenue?

Parallel to the substantial works on taxation, a flourishing strand of the literature is concerned with financial inclusion and its related implications to the economic environment. An inclusive financial system supposes that individuals as well as businesses, especially those at the bottom of the pyramid, have access to basic financial services in the formal financial system (Allen *et al.*, 2016; Ozili, 2018). The World Bank defines financial inclusion as the process of ensuring that individuals and businesses have access to useful and affordable financial products and services (*i.e.*, transactions, payments, savings, credit and insurance) that meet their needs delivered responsibly and sustainably. Considered as a policy framework for socio-economic development that focuses on getting more people to use and have access to formal banking services (Mitchell and Scott, 2019), financial inclusion is increasingly receiving proper attention over recent years. Greater access to financial services is considered as a major strategy and a key enabler to achieve the 2030 development agenda on sustainable development goals. Yet, nearly half of the world's adult population (2 billion adults), is still financially excluded (Fu *et al.*

¹² The first chapter of the thesis discusses the concept of tax effort.

2017) despite the global rise in mobile and digital banking. As of 2017, about 1.7 billion adults remain unbanked (*i.e.*, without an account at a financial institution or through a mobile money provider) in developing countries, specifically.¹³

Previous works on financial inclusion focused mainly on exploring the impact of financial inclusion on economic growth, poverty reduction, employment, and inequality (see e.g., Kpodar and Andrianaivo, 2011; Sarma and Pais, 2011; Cull et al., 2014; Sahay et al., 2015a,b; Sharma, 2016; Bayar and Gavriletea, 2018; Kim et al., 2018; Neaime and Gaysset, 2018; Fouejieu et al., 2020, among others). In developing countries, the bulk of the economy is still operating in the informal sector, dubbed as "hard-to-tax sector". Increased access to and use of formal financial services including banking (credit and savings), insurance, electronic transactions (money transfer and bill payments) is associated to a shift in consumption away from informal to formal markets and a cashless economy, provides opportunities for easy taxation and more tax collection. For instance, Sung et al. (2017) show that electronic transactions in South Korea reduced the shadow economy, while Mitchell and Scott (2019) highlight that cashless economies are prone to higher and more stable VAT-to-GDP ratio in Latin America countries (i.e., Argentina, Brazil, and Chile). Thus, financial inclusion may a priori offer an opportunity for raising more tax revenues in developing countries through, not only a shift in transactions from informal markets into formal markets and less cash use but also a clear identification of taxpayers as well as the traceability of transactions and a good calculation of the tax base.

Surge in number of conflicts and political unrest in developing countries: What impact on the financial sector?

The recent decade has also witnessed a considerable rise in the number *conflict-affected* of countries across the globe, specifically *conflict-affected* developing countries. Indeed, the world has incredibly become more violent, with a drastic deterioration of internal unrest in developing countries. This is characterized by different forms of violence including protests (Lebanon, Hong Kong, Iraq, Chile), geopolitical competition (Yemen, Syria), insurgencies (Somalia, Afghanistan), political violence (Mali, Cote d'Ivoire, Cameroon, Guinea) and terrorist

-

¹³ World Bank's Global Findex Database, 2017.

threat in the Sahel¹⁴ (ACLED, 2010). For instance, only in 2019, the Sahel recorded more than 2,100 political violence and protest events resulting in over 5,360 reported fatalities (ACLED, 2010).¹⁵

The negative macroeconomic consequences of conflicts and political instabilities are well established in the literature (see *e.g.*, Alesina and Perotti, 1996; Alesina *et al.*,1996; Collier and Hoeffler, 1998,2004; Abadie and Gardeazabal, 2001; Neumayer, 2004; Jong-A-Pin, 2009; Aisen and Veiga, 2013; Rother et al., 2016; IMF, 2019; Qureshi, 2013; Huang, 2019) as well as their spillover effects (Hegre and Sambanis, 2006). For instance, the IMF (2019) estimates that an increase in conflict intensity in SSA countries is associated with a decrease of about 12 percent in the total revenue, while the fiscal deficit increases of about 1.7 percent of GDP. In addition, conflicts worsen the fiscal balance position in *conflict-affected* countries. In the first two years of conflict in SSA, the public debt ratio rises about 16 percentage points of GDP, with the effect culminating to almost 20 percent of GDP by the fifth year of conflict (IMF, 2019).

The effect of conflicts and internal unrest on financial variables, surprisingly received much less attention, particularly in developing countries. The existing few studies rather focus more on the United States (see *e.g., Willard et al.,* 1995; Chen and Siems, 2004; Amihud and Wohl, 2004; Schneider and Troeger, 2006;). Rigobon and Sack (2005), using an heteroskedasticity-based estimation technique explored the impact of the risks associated with the Iraq war on financial indicators in the United States (US). The study finds evidence that rises in war risk result in significant declines in equity prices and treasury yields, a fall in the dollar as well as a widening of lower-grade corporate spreads, and an increase in oil prices. Similarly, Leigh *et al.* (2003) analyzed the consequences of the US-Iraq war on an *ex-ante* assessment framework. The results reveal that the war has large effects on equity markets lowering the value of US equities by around 15 percent. Furthermore, Wolfers and Zitzewitz (2009) point that a 10 percent increase in the probability of war leads to a 1½ percent decline in the S&P 500. This may raise the empirical question about the potential impact of conflicts and political instabilities on the banking sector in developing countries.

¹⁴ Sahel includes Burkina Faso, Chad, Mali, Mauritania, and Niger.

¹⁵ See Appendix 1.2.

Value Added and theoretical foundations of the thesis

In sum, the aforementioned empirical literature is quite unambiguous that tax revenue constitutes the important source of finance for sustainable development in DCs, and there is imperative need to enhance and strengthen tax revenue mobilization in these countries. In addition, the low tax effort and the non-diversification of tax sources are pointed out as the main impeding factors to greater tax collection in DCs.

Thus, this thesis, drawing essentially on empirical analyses and mainly focusing on developing countries, ¹⁶ aims to extend the reflection on the challenges to higher tax revenue mobilization in DCs and improve upon the existing works with particular attention on issues not yet addressed but important. More specifically, the thesis analyses the tax effort in developing countries taking into the natural resources as most of these countries have recently discovered new resources, while examining how these countries may tap more tax revenue from a diversified tax structure and increased access to financial services. The recent proliferation and surge of violence in DCs countries are raising concerns about the effects of conflicts and political instabilities on macroeconomics variables. The thesis also gives the first attention to the consequences on the financial sector, specifically on the banking sector, in *conflict-affected* developing countries since financial sector has a paramount role in countries capacity to mobilize tax revenues.

However, the thesis, though empirical relates to several strands of the theoretical literature. First, it relies on the theory of taxation and development (Ramsey, 1927; Kendrick 1939; Kaldor, 1936; Oakland, 1967; Diamond and Mirrlees, 1971; Feldstein, 1976; Atkinson and Stiglitz, 1976; Mirrlees, 1976; Deaton, 1981; Bradley *et al.*, 1984; Bates and Lien 1985; Chamley, 1986; Newbery and Stern, 1987; Burgess and Stern, 1993; Boadway, 1994; Lemieux *et al.*, 1994; Simpson, 1994; Andreoni *et al.*, 1998; Pirttilä and Tuomala, 2001; Duane and Steinmo, 2002; Herb, 2003; Cremer *et al.*, 2003; Sandmo, 2005; Emran and Stiglitz, 2005; Auriol and Warlters, 2005; Kaplow, 2006; Kopczuk and Slemrod, 2006; Besley and Persson, 2009; Kaplow, 2010; Golub, 2011; Besley and Persson, 2013; Weinzierl, 2018) which emphasizes various issues related to implementing

16 Developing countries include the low-income countries and the middle-income countries, but not exclusively they

are more concerned with domestic tax revenue mobilization than developed ones.

taxation including the level and structure of taxation in developing countries, optimal taxation, tax evasion, capital and income taxation, tax distortions, tax reforms, etc.

Second, the thesis draws upon the theoretical literature on economic diversification (McLaughlin, 1930; Tress, 1938; Chenery, 1979; Kort, 1981; Grossberg, 1982; Jackson, 1984; Syrquin, 1988; Scherer and Ross,1990; Kort 1991; Ghosh and Ostry, 1994; Siegel *et al.*, 1995; Bleaney and Greenaway, 2001; Koren and Tenreyro, 2013 among others) which evidences that diversification is conducive to higher and more stable economic performance and growth (Chenery, 1979; Syrquin, 1988). Economic concentration plays an important role in explaining the volatility of the growth of GDP per capita (Miklûs and Tenreyro, 2007). For instance, focusing on exports, Ghosh and Ostry (1994), Bleaney and Greenaway (2001), and McMillan *et al.* (2014) stress that export diversification could help to stabilize export earnings in the long run and makes countries more resilient to shocks.

Finally, this thesis relates to the finance and growth theories (Gurley and Shaw, 1955; Goldsmith, 1969; Greenwood and Jovanovic, 1990; Benhabib and Rustichini, 1996; Levine, 2004), as well as the theoretical literature on conflicts (*e.g.*, see Acemoglu *et al.*, 2004; Powell, 2004; Acemoglu, 2005; Acemoglu and Robinson, 2006; Blattman and Miguel, 2009; Yared, 2010; Acemoglu *et al.*, 2010 among others). Financial intermediaries and more access to financial services encourage high-yield investments and growth, thereby opportunities for taxation, while conflicts are found to be harmful to macroeconomic variables.

Summary and Main Results

This thesis is made up of five chapters. In its first Chapter, the thesis lays the conceptual framework and provides an overview of taxation in modern economies with special attention to developing economies. More precisely, **Chapter 1** provides a comprehensive definition and describes the various role and importance of implementing tax policy. It also identifies the different factors impeding greater tax revenue mobilization in developing countries with a detailed review of the related existing evidence. From this conceptual and empirical background, the next three chapters of the thesis (**Chapter 2**, **Chapter 3**, and **Chapter 4**) focus on tax revenue mobilization in developing countries. More precisely, **Chapter 2** examines the

tax effort in Sub-Saharan African (SSA) region¹⁷ by introducing a new database of tax revenue, while challenging some previous evidence through replication exercises. The database is compiled from statistical information of the African Department of the International Monetary Fund covering 42 SSA countries over the period 1980-2015. This chapter is innovative in two ways: first, the dataset compiled allows to distinguish tax revenue from the natural resource sector from the other sectors (hereafter, non-resource taxes), in line with recent works in the literature emphasizing a *crowding-out effect* of natural resource bonanza on tax revenue. Second, to analyze the tax effort, it employs a stochastic frontier parametric model which distinguishes countries' structural factors and the tax system. The results show that over the considered period, SSA countries scored an average estimated tax effort of 0.57 corresponding to a tax-to-GDP ratio of 13.2, on average. This result also implies a low use of the tax potential in SSA countries and the existence of room for more tax revenue collection compromised mainly by a weak tax system. More precisely, SSA countries could raise 23.2 percent of GDP in non-resource taxes if they fully used their tax potential. Regarding the pressing financing need in this region, countries will benefit by strengthening their tax system, namely improving tax administration, broadening tax sources, and reducing tax exemptions. Our replication exercises broadly confirm previous analyses on the determinants of tax revenue in DCs, though our results show relative smaller coefficients for some variables suggesting a smaller effect when non-resources tax ratio is used instead of central government tax revenue.

Chapter 3 moves to analyzing the effect of diversified tax sources on tax performance as well as tax revenue stability. Specifically, the chapter tests the idea that relying on a diversified tax structure may enhance resilience to fiscal risks. This chapter is the first of its kind in the literature to explore this avenue by proposing a new cross-country tax revenue diversification index (RDI). Unlike the few existing tax diversification indices, which are constructed only at the state level for the United States (US), the RDI is computed at the national level, covering a large panel of

_

¹⁷ The reason of focusing on this region in this chapter is twofold: First, the Sub-Saharan Africa region faces the most sizable financing needs compared to other low-income countries region. For instance, to meet the Sustainable Development Goals, the median Sub-Saharan African country additional spending need amounts about 19 percent of GDP compared to 15.4 percent of GDP for low-income countries (Gupta and Liu, 2020). Second, the nature and the availability of the data justifies this choice.

127 countries over the period 2000-2015 and built on the Theil index. We find suggestive evidence that tax revenue diversification reduces tax revenue volatility, thus, comforting the long-held views about the prominence of tax revenue diversification for fiscal resilience strengthening. While exploring the drivers of the RDI, we find that tax revenue diversification is not just a reflection of economic diversification, but also an outcome of macroeconomic, political and institutional factors. Interestingly, a non-monotone relationship is also at play between RDI and economic development. Moreover, countries' portfolio of tax sources is getting more diversified as their economy develops, until a tipping point, where richer countries start finding it harder to diversify further their tax revenue sources.

Chapter 4 analyses how developing countries may tap tax resources from the financial sector, mainly through greater access to formal financial services. It contributes to the existing literature on the drivers of tax revenue by exploring tax revenue opportunities from unlocking access to financial services in developing countries. Evidence based on a sample of 62 developing countries over the period 2004-2017 shows that greater access to financial services captured by the number of ATMs per 100,000 adults increases government non-resources tax-to-GDP ratio, and this result is driven by households consumption and business expansion. The chapter provides insights on tax resources-harnessing opportunities from implementing and promoting financial inclusion policies for developing economies.

Based on the finding that the financial sector provides opportunities to reap tax revenue in DCs, the **fifth** and last **Chapter** of the thesis, analyzes the consequences of the increasing internal unrest across the world, specifically in DCs, on the financial sector. ¹⁸ Unlike the extensive existing literature examining the economic impact of conflict and political instability, of particular importance, the chapter investigates whether rising conflicts and political instabilities lead to increased occurrence of banking crises in developing countries. The analysis is based upon a panel dataset of 92 countries, covering both emerging and developing countries, over the period 1970-2016. The results show a strong evidence that conflicts and political instability are indeed associated with higher probability of systemic banking crises and the primary channel of transmission is the occurrence of fiscal crises following a conflict or political

_

¹⁸ Although indirectly, this Chapter might pretend to show how conflicts and political instabilities may compromise tax revenue collection through their consequences on the financial sector.

instability. Besides, we find that the duration of a conflict is positively associated with the rising probability of a banking crisis. Interestingly, the chapter also highlights that conflicts and political instability in one country can have negative spillover effects on neighboring countries' banking systems. This chapter clearly emphasizes the need for governments of countries infested by conflict and/or political instability to address their root causes and try to mitigate their negative effects with the appropriate design and implementation of economic policies. Creating adequate fiscal space in normal times can reduce the likelihood of fiscal crises and in turn lower the probability of systemic banking crises. Our results also suggest that policymakers should pay attention to conflicts in neighboring countries even if they are not conflict-afflicted as their banking systems may suffer negative spillovers from their neighbors. Finally, the thesis concludes and draw some policy recommendations (**General Conclusion**).

Appendices

Appendix 1.1. Country List

Developing countries		Developed countries		
Afghanistan, Islamic Republic of	Mauritius	Argentina	Japan	
Albania	Mexico	Australia	Korea, Republic of	
Armenia, Republic of	Moldova	Austria	Latvia	
Azerbaijan, Republic of	Mongolia	Barbados	Lithuania	
Belarus	Morocco	Belgium	Luxembourg	
Bolivia	Myanmar	Canada	Malta	
Bosnia and Herzegovina	North Macedonia, Republic of	Chile	Nauru	
Brazil	Paraguay	China, P.R.: Hong Kong	Netherlands	
Bulgaria	Peru	China, P.R.: Macao	New Zealand	
Cabo Verde	Philippines	Croatia	Norway	
China, P.R.: Mainland	Romania	Cyprus	Poland	
Colombia	Russian Federation	Czech Republic	Portugal	
Congo, Republic of	Rwanda	Denmark	San Marino	
Costa Rica	Samoa	Estonia	Seychelles	
Egypt	Senegal	Finland	Singapore	
El Salvador	Serbia, Republic of	France	Slovak Republic	
Georgia	South Africa	Germany	Slovenia	
Honduras	Tajikistan	Greece	Spain	
Indonesia	Tanzania	Hungary	Sweden	
Jordan	Thailand	Iceland	Switzerland	
Kazakhstan	Timor-Leste, Dem. Rep. of	Ireland	United Arab Emirates	
Kenya	Tonga	Israel	United Kingdom	
Kiribati	Tunisia	Italy	United States	
Kosovo, Republic of	Turkey			
Kyrgyz Republic	Uganda			
Lesotho	Ukraine			
Malaysia	Uzbekistan			
Maldives	Yemen, Republic of			

Monthly (1 January 2011 - 30 June 2020) Annual (2011 - 2020*) 1200 March 20 4,301 1000 800 2,556 600 March 19 Feb 15 400 1,439 Jan 13 1,305 200 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Magnitude by location (1 January 2020 - 30 June 2020) Region (1 January 2020 - 30 June 2020) 171 50 () 100 Tillaberi Gao Centre-Nord Diffa 216 161 155 143 Tombouctou Boucle du Mouhoun Tahoua Koulikoro Sikasso

Appendix 1.2. Conflict in Sahel: Reported Fatalities

Source: ACLED data (2020).
Note: * First half of 2020 (01/01/2020-06/30/2020).

^{*}This chapter was written with E. Caldeira, A. A. Dama, M. Mansour, and G. Rota-Graziosi and a version of it has been published in the journal *Revue d'Économie du Développement*.

2.1. Introduction

Since the Addis Ababa Conference in July 2015, Domestic Revenue Mobilization (DRM) became one of the main tools of financing Sustainable Development Goals (SDGs). DRM is now a well-discussed topic to address the issue of economic development (see *e.g.*, Besley and Persson, 2014) and is a privileged tool for donors as for international and regional institutions (African Development Bank, International Monetary Fund, World Bank, European Union Commission).

In this paper, we propose (i) an update and complete version of the tax revenue dataset published in Mansour (2014), (ii) an estimate of tax effort for these countries, and (iii) some replication analyses of previous tax effort estimations by Gupta (2007) and Fenechietto and Pessino (2013). The database covers 42 Sub-Saharan African (SSA) countries over the period 1980-2015. It results from statistical information collected in the African Department of the International Monetary Fund (IMF)—most of which is included in public IMF documents. We distinguish tax revenue from the natural resource extractive industry, from those from other economic sectors.

Tax revenue excluding natural resources is on average 13.2 percent of GDP. The average estimated total tax effort is 0.57. In other words, SSA countries could raise on average 23 percent of GDP of non-resource taxes if they fully utilized their potential. We decompose the total tax effort score into time-varying and persistent tax effort and conclude that the total tax effort score is mainly driven by time-varying factors. Moreover, consistent with previous literature, we find that countries' stage of development measured by per-capita income, financial development, and trade openness are important factors improving tax revenue in the region, while natural resource endowment and the importance of the agriculture sector reduce unambiguously the non-resource tax-to-GDP ratio. Regarding the replication exercise, the estimations broadly confirm previous analyses such as Fenechietto and Pessino (2013). However, our verification test failed to replicate the exact results of Gupta (2007) in terms of robust coefficients and significance of the variables, which might be caused from the use of less detailed data than we provide here.

Our analysis contributes to the existing literature by providing a new estimation of SSA countries' total tax efforts and their composition. We decompose tax effort in terms of direct taxation (Corporate Income Tax, CIT, and Personal Income Tax, PIT). In addition, beyond the originality of the database itself and the empirical results, our work participates explicitly to the replication principle given its online application developed with R-Shiny. The need for replicability appears highly relevant for tax effort analysis given the primacy of DRM in the agenda of developing countries, donors, and international organizations. The database is dynamic and is hosted on a webpage that allows users to interact with the data and generate new analytical results, including quick descriptive statistics and running alternative specifications of regressions.

The rest of the chapter is organized as follows: Section 2 presents the dataset; Section 3 briefly reviews the literature on the determining factors of tax effort in developing countries; Section 4 describes the empirical methodology and variables. Section 5 presents and discusses the results; section 6 proposes a replication analysis of Gupta (2007) and Fenechietto and Pessino (2013), and section 7 concludes.

2.2. Tax Revenue Dataset for Sub-Saharan Africa over 1980-2015

The study of tax policy in developing countries has long been constrained by the availability and the quality of detailed relevant data. Moreover, extractive industries have played and still play a crucial role in the economic development of SSA countries. More than half of these countries are resource-dependent, that is natural resources represent 25 percent or more of total country's exports. Tax revenues from this sector are usually large and at high risk of being taken out of the source country through various licit or illicit channels, including generous tax incentives provided in mining or petroleum codes and other laws; aggressive tax planning such as the use of thin capitalization, trade mispricing, or plain tax evasion; and double taxation agreements that do not always protect appropriately source countries' taxation rights.

We provide here an updated version of the tax revenue dataset published in Mansour (2014), which covered the period 1980-2010 for 41 countries (see https://data.cerdi.uca.fr/taxeffort/).

It participates to recent efforts to better apprehend tax revenues in Africa, in particular the revenue statistics from the OECD, which cover 26 countries in its last release and the Government Revenue Dataset initiated by the International Centre for Tax and Development (ICTD) and updated by UNU-WIDER. There are three advantages that our dataset provides relative to these two alternatives. First coverage for SSA countries is generally broader, and deeper for each of the tax series. Second, the definition of the variable is consistent across all countries, Finally, the isolation of resource revenue from non-resource (tax) revenue allows for a better understanding of the interaction of these two fundamentally different (economically) sources.

Distinguishing resource from non-resource revenue is highly relevant to understand countries' tax effort. For instance, Bornhorst *et al.* (2009), Crivelli and Gupta (2014), and James (2015) emphasize a crowding-out effect between resource revenue and non-resource tax revenue: an increase of the former reduces the latter. McGuirk (2013) explains this effect through the strategy of the government to remain in power by reducing its accountability or equivalently the tax pressure. Caldeira *et al.* (2020) provide an alternative explanation of the negative relationship between resource and non-resource tax revenue in terms of an inter-ministerial

¹⁹ See https://ferdi.fr/publications/a-tax-revenue-dataset-for-sub-saharan-africa-1980-2010.

²⁰ See https://www.oecd.org/ctp/revenue-statistics-in-africa-2617653x.htm.

²¹ See https://www.wider.unu.edu/project/government-revenue-dataset.

The ICTD database, now Government Revenue Dataset (https://www.wider.unu.edu/project/government-revenue-dataset), combines revenue data primarily from OECD revenue statistics, IMF staff reports' statistical tables, and IMF GFS. This produces asymmetries in the definition of resource revenues. For instance, ICTD reports no resource tax revenue for Australia and Canada, and only aggregated corporate income tax (CIT), which include profit taxes from the resource sector if the source is OECD of GFS. These asymmetries are less important in SSA countries since the primary source for ICTD for these countries is IMF staff reports, and Keen and Mansour (2009)—and both report a different concept of resource revenue. For instance, the average resource revenue-to-GDP ratio during 1980-2015 in ICTD is 8.16 percent, which is close to the 8.6 percent in our database. However, the average CIT ratio in ICTD is 1.82 percent over the same period, slightly higher than the 1.7 percent in our database—possibly because CIT revenue for SSA taken from OECD revenue statistics for Africa includes some resource revenue.

²³ The OECD statistics do not report resource revenues unless they are accounted for as corporate taxes. This may not be an issue in OECD countries, where oil revenue is derived primarily through the tax system. However, in SSA countries, production sharing agreements and turnover-based royalties are prominent.

tax competition: the Minister in charge of Mining and Petroleum can tax partly the same base than the Minister of Finance. The inter-ministerial tax competition reduces total tax revenue and deteriorates the economic development of these countries by favoring a concentration of the economic activity in the extractive industry.

The dataset covers 9 tax series and 42 SSA countries over the period 1980-2015. The series are:

1. Total Taxes; 2. Trade Taxes; 3. Indirect Taxes; 4. VAT with a decomposition for some countries between domestic VAT, VAT collected at the border, and VAT refunds; 5. Excises; 6. Direct Taxes;

7. Personal Income Tax; 8. Corporate Income Tax with additional information for some countries concerning CIT from extractive industry; 9. Other tax revenues.

To isolate the impact of resource revenue on the tax effort, the database reports revenue from extractive activities separately and irrespective of the policy tool used to raise them. As such, resource revenues include royalties and other fees, dividends, and bonuses from extractive activities, the government share of production and related agreements, and (importantly) corporate income taxes. The latter is included because it is similar in design to production sharing, and hence subject to the same extent as volatility in commodity prices. However, resource revenues do not include non-refundable VAT on inputs, which we were not able to identify separately—presumably. This is not very important in aggregate given that extractive companies often seek and obtain an exemption from VAT on input, knowing that VAT refund mechanisms in SSA countries are not very efficient.

Figure 2.1.a. displays the evolution of the average tax revenue in Africa, in percent of GDP.²⁴ Note that the volatility of commodity prices explains a large share of revenue variations over the period. However, an improvement of non-resource tax revenue is perceptible since 2000: This revenue stagnated around 12.5 percent of GDP from 1980 to 2000 and reached 15 percent by 2015.

In the Figure 2.1.b., the chapter highlights the tremendous change in the structure of *non-resource* tax revenue over the period. The reduction of tariff duties (*i.e.*, trade taxes) was offset

23

²⁴ More interesting and insightful figures are provided through the dedicated website (see Graphics rubric).

by an increase in the revenue of taxes on goods and services, which results from the introduction of the Value Added Tax (VAT).

2.1.a. Total tax revenue

2.1.b. Tax composition

Figure 2.1. Tax Revenue (percent of GDP) in SSA Over Time (1980-2015)

Source: Tax Revenue Dataset for SSA and authors' calculations.

1980

Direct taxes

2000

Year

Taxes on gds and serv.

2010

2020

2020

Figure 2.2 shows the tax performance (*i.e.*, total tax revenue collected) across SSA countries in 1980 (Figure 2.2.a), 1990 (Figure 2.2.b) and 2015 (Figure 2.2.c).²⁵ Total tax revenue amounted to 91, 117, and 259 billion USD²⁶ in 1980, 1990, and 2015, respectively. Exploring the country-based tax performance, it emerges that South Africa and Nigeria are the top performers. More precisely, South Africa collected in percent of total revenue (including resource revenue) 32, 39, and 40 percent of tax revenue, while Nigeria raised 46, 36.2, and 13 percent of taxes in the concerned years, respectively. This highlights the main role of the natural resource sector in aggregate for SSA and the sharp decrease of total tax revenue collected in Nigeria. The variation of total tax revenue over the period 2000-2015 displays contrasting results: while tax revenue decreases by 49 percent in Nigeria, they increase significantly in Mozambique by 615 percent reaching 3.1 billon USD in 2015, in Rwanda by 403 percent (1,2 billon USD), in Chad by 376 percent (1.1 billon USD), and in Ghana by 341 percent (8 billon USD).

1980

1990

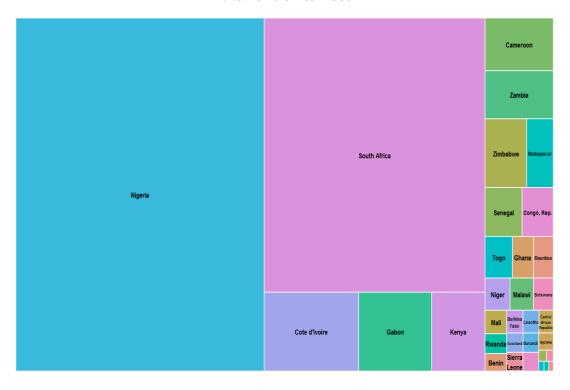
Total taxes

2000

Year

Non-resources taxes

2010


Taxes on natural resources

²⁵ Some countries are missing for 1980.

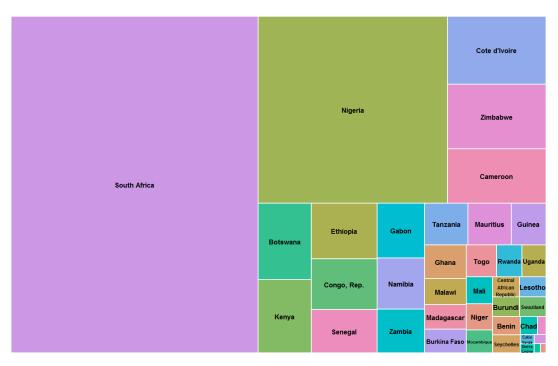

²⁶ Data are reported in constant 2010 prices.

Figure 2.2. Total Tax Revenue in SSA

2.2.a. For the Year 1980

2.2.b. For the Year 1990

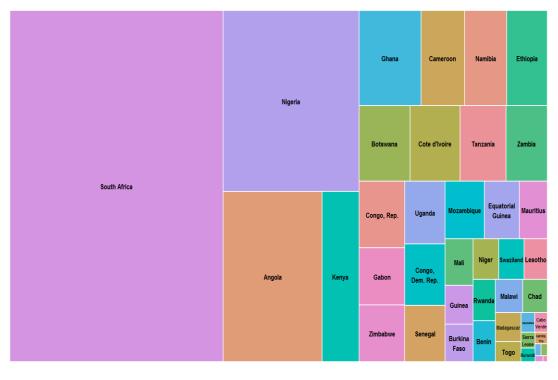


Figure 2.2.c. For the Year 2015

Source: Tax Revenue Dataset for SSA and authors' calculations.:

2.3. Brief Literature Review on Tax Effort

DRM would be a more reliable and sustainable source of financing than its domestic alternative (debt, seigniorage) or international financial flows (*i.e.*, remittances, official development assistance and foreign direct investment). Hence, a *non-negligible* literature has investigated how countries, specifically developing countries, which face important financial constraints, can levy more domestic resource to finance development and wean themselves from aid.

Several empirical analyses study the macroeconomic and institutional driving factors of countries tax-to-GDP ratio. A first generation of empirical works establishes that agriculture, mining (resource rent), and share of external debt in total debt are significant determinants of countries tax ratios. Agriculture share, which is still important in the least developed economies, is negatively associated with the level of tax revenue (Chelliah *et al.*, 1975; Leuthold, 1991; Tanzi, 1992; Stotsky and WoldeMariam, 1997), while mining and external debt are positively associated with tax revenues (Chelliah *et al.*, 1975; Tait *et al.*, 1979 and Tanzi, 1992).

However, the relationship between natural resource sector and tax revenue remains controversial. Indeed, in line with the resource curse debate, recent studies point out a negative association between resource rent and government tax revenue. For instance, Belinga et al. (2017) highlight a crowding-out effect of resource revenue on non-resource revenue for a panel of 30 resource-rich countries over the period 1992-2012. Natural resource boom is associated with less incentive in tax collection. Brun *et al.* (2014) consider tax revenue from the natural resource sector as an explanatory variable of the non-resource tax effort. They establish a negative effect of the former on tax revenue potential.

A second generation of empirical works outlined the pivotal role of inflation, institutional quality, education, political stability, external aid, and financial development in addition to the previous economic factors (Tanzi and Davoodi, 1997, Grigorian and Davoodi, 2007, Gupta, 2007, Gordon and Li, 2009, Clist and Morrissey, 2011, Fenochietto and Pessino, 2013, Feger and Asafu-Adjaye, 2014).

We provide here a new dataset and focus on the effort of countries to raise tax revenue. We define tax effort as the extent to which the actual tax revenue collected is from the maximum level of tax revenue given their characteristics. These characteristics correspond to the determinant variables previously studied in the literature, which are mainly: the level of development, trade openness, the size of the agricultural sector, natural resource rent, and financial development. Given these characteristics, we compute for each country potential tax revenue. Tax effort results then from the comparison between potential tax revenue and actual collected tax revenue. The closer they are, the greater is the tax effort. We do not study the details of countries' tax code, nor the organization of their revenue administration or authorities.

Our approach is then purely economic since it does not rely on countries' tax system²⁷ but only on economic characteristics. It allows some international comparisons among countries, which share similar economic features. This analysis could be then complemented by some tax policy

27

²⁷ Gillitzer and Slemrod (2015) define tax system as the combination of tax policy (tax laws) and revenue administration.

and revenue administration diagnostics. Indeed, differences in tax effort across countries may result from some distinctions in existing taxes, their statutory rates, their respective tax bases, tax expenditures, the efficiency of revenue administration (organization, IT technology, the number of tax inspectors, and even their remunerations' modalities). ²⁸ Other determinants such as tax morale, the ethnolinguistic fragmentation of the countries, political regimes (presidential or parliamentary), inflation rate are variables, which may be added in our empirical assessment of tax effort. ²⁹

Tax effort is complementary to the tax gap analysis, 30 which measures the difference between expected revenue and collected one. The tax gap approach is legal and microeconomic, while the tax effort analysis relies only on macroeconomic data. Indeed, the computation of expected revenue differs from potential revenue in the tax effort analysis, since the former requires the use of statutory tax rates, tax base's definition, and eventually some assumptions on the behavior of consumers and producers. The tax gap has usually two components: the policy gap and the compliance or administrative gap. The former, roughly equivalent to the cost of tax expenditures, results directly from a political decision to reduce the tax burden of the investor or the consumer. This policy aims at stimulating investments or at protecting the poorest. For instance, investment or sectorial (Petroleum or Mining) codes may provide tax exemptions or reduce tax rates, which would reduce tax revenues. Similarly, one of the main justifications of VAT exemptions or reduced rates is to protect the poorest consumer. For instance, developing countries use to exempt completely the agricultural sector and some SSA countries exempt even from VAT the importations of some foodstuff such as rice and wheat. The rationale is the assumption of a tax incidence close to one, i.e., such exemptions would reduce the price for households.31 The second element of the gap is the administrative or compliance gap. This gap

²⁸ See for instance Caldeira and Rota-Graziosi (2019) for a detailed analysis of relative tax revenue performance between Benin and Togo, which begins with a tax effort analysis of these two countries and is completed by a review of countries' tax systems.

²⁹ The devoted website to this paper allows adding any variable and running new estimates of tax efforts (see https://data.cerdi.uca.fr/taxeffort/).

³⁰ Several countries provide some tax gap analyses. One of the most exhaustive exercises is the VAT Gap work done by the European Union (EU) commission. The VAT gap amounts to 137 billion Euro in 2017, or equivalently to 11.2 percent of total VAT revenue.

³¹ We do not discuss here the efficiency or the equity of these tax expenditures.

corresponds to the capacity of tax and customs administration or tax authorities to enforce current tax laws and to the compliance behavior of firms and individuals to pay their taxes.

2.4. Empirical Methodology: The Stochastic Frontier Analysis

The literature proposes several approaches to capture the countries' tax effort. The usual indicator to compare countries' tax effort is the tax-to-GDP ratio. However, Stotsky and WoldeMariam (1997) point out that this simple approach is inappropriate to measure the taxable capacity since not all taxes are explicitly linked to income and to its distribution. Using panel data on 42 Sub-Saharan African countries, during the period 1990-1995, they propose another measure of tax effort consisting of the ratio of the actual to the predicted tax share in GDP. They find that countries with high tax shares tend to have a relatively high tax effort index, even though some disparities remain across countries. Following a similar approach, Gupta (2007) computes the tax effort for 105 developing countries over 25 years but clearly recognize some shortcomings related to this approach.

Cyan *et al.* (2013) propose a method of estimating tax effort that closely relies on the revenue adequacy approach. This method consists in looking at the deviations between what a country would like to raise in tax revenues – as revealed by the structural choice of the level of public expenditures – and its actual tax revenue level. This approach corroborates the empirical evidence that changes in expenditures induce changes in tax levels (see Baicker and Skinner, 2011). Recently, Yohou and Goujon (2017) proposed a Vulnerability-Adjusted Tax Effort Index (VATEI) for a sample of 120 developing countries over 1990-2012. Their approach consists in building the tax effort as the residual of a standard panel regression model (random effects model) of non-resource tax ratio on the economic vulnerabilities and human asset indices, in addition to the usual determinants of tax revenue. This adjusted tax effort index is assumed to measure the willingness and capacity of governments to collect tax beyond the structural factors.

An alternative and increasingly used approach to capture countries' tax effort is the Stochastic Frontier Analysis (SFA) method, which has been followed by Alfirman (2003), Fenochietto and

Pessino (2013), Langford and Ohlenburg (2015), Brun and Diakite (2016). Aigner *et al.* (1977) and Meeusen and van Den Broeck (1977) developed SFA approach to model firms' production behavior. The rationale is that economic agents cannot exceed an "ideal frontier" of production, which is the optimal level of output given the limited endowment of inputs. In our context, the tax frontier refers to the tax capacity, which is the maximum potential tax revenue, given a country's institutional, demographic, and economic features, while the tax effort is the actual revenue in relation to the frontier. Hence, the closer a country is to that frontier, the greater is its tax effort.

The stochastic frontier approach encompasses parametric and non-parametric models. Data Envelopment Analysis (Charnes *et al.* 1997) and the Free Disposal Hull (Deprins *et al.* 1984) are the two main and increasingly popular methods used for non-parametric stochastic frontier models. These methods use linear optimization programs to construct the efficiency curve. They display the advantage that no restrictive assumptions on the production function are necessary (except the standard convexity assumption). However, they remain sensitive to random variations in data and measurement errors. Any variation between production units is therefore likely to be interpreted as inefficiency. Furthermore, the inefficiencies estimated by these models are very sensitive to variations in the sample, to the heterogeneity between the units and to the presence of outliers.

Regarding parametric models in panel data analysis, they are single output-based and categorized into five groups: (i) time-invariant technical inefficiency models (Pitt and Lee, 1981; Schmidt and Sickles, 1984); (ii) time-varying technical inefficiency models Cornwell *et al.* (1990), Kumbhakar (1990), Battese and Coelli (1992), Lee and Schmidt (1993), and Kumbhakar and Wang (2005); (iii) models that separate firm heterogeneity from inefficiency (Greene, 2005; Wang and Ho, 2010); (iv) models distinguishing persistent and time-varying inefficiency (Kumbhakar and Heshmati, 1995); (v) and finally models separating firm effects, persistent inefficiency, and time-varying inefficiency (Colombi *et al.*, 2014; Kumbhakar *et al.*, 2014; Filippini and Greene, 2016). In panel data, such models offer the possibility for richer specifications, deal with stochastic noise, and allow testing hypotheses (Hjalmarsson *et al.* 1996; Odeck, 2007).

We follow a parametric approach to estimate the tax effort since we focus on a single output the total non-resource tax-to-GDP ratio.³² More precisely, we use the model that separates the error into four components: Generalized True Random Effects model (GTRE). This model was introduced by Colombi *et al.* (2014), Kumbahkar *et al.* (2014), and Tsionas and Kumbahkar (2014). It presents several advantages: (i) it takes into account random shocks; (ii) it is robust to the presence of heterogeneity within the panel; (iii) it allows distinguishing country heterogeneity, and persistent and time-varying factors affecting countries' tax effort. Persistent (*i.e.*, structural) factors are for instance colonial history, culture, geography, the economic structure of the country, which have a long-lasting influence on the tax effort. The time-varying factors are both country- and time-specific. They include tax policy, tax administration performance, natural resources discoveries, and commodity price cycles. For example, countries might improve their tax administration performance by clamping down on tax evasion, training their tax officers, or using more sophisticated tax tools. Also, countries' tax effort might change following the discovery of natural resources or a boom in commodity prices.

Different methods are proposed in the literature to estimate the parameters of the GTRE model: Colombi *et al.* (2014) use a maximum likelihood estimator (MLE); Kumbahakar *et al.* (2014) propose a multi-step procedure; Tsionas and Kumbahakar (2014) develop a Bayesian approach; Filipini and Greene (2016) use a simulated maximum likelihood approach.

We estimate the following model:

$$\tau_{i,t} = \alpha + f(X_{i,t}, \beta) + \mu_i + \nu_{i,t} - \eta_i - \varphi_{i,t}$$
(2.1)

The dependent variable, $\tau_{i,t}$, represents the logarithm of the total *non-resource* tax-to-GDP, the subscripts i and t denote respectively country and time dimensions and $X_{i,t}$ is a vector of covariates explaining countries tax ratio. $\eta_i > 0$ and $\varphi_{i,t} > 0$ are the persistent and *time-varying*

³² We exclude natural resource revenue, which variations are mainly driven by commodities' prices.

inefficiencies respectively, while μ_i and $\nu_{i,t}$ represent the random effects and the stochastic noise, respectively.³³

Starting from hypotheses on the distribution of the four errors, the MLE approach of Colombi et al. (2014) makes it possible to obtain a form of the log-likelihood. Indeed, assuming that $v_{i,t}$ is independent and identically distributed (iid) with a normal distribution and $\varphi_{i,t}$ is iid with a half-normal distribution, the error $\varepsilon_{i,t} = v_{i,t} - \varphi_{i,t}$ has an asymmetric normal distribution with parameters $\lambda = \sigma_v / \sigma_\omega$ and $\sigma = \sigma_v^2 + \sigma_\omega^2$. Similarly, the error $\psi_i = \mu_i - \eta_i$ has an asymmetric normal distribution with parameters $\lambda = \sigma_{\mu}/\sigma_{\eta}$ and $\sigma = \sigma_{\mu}^2 + \sigma_{\eta}^2$. The *two-term* error $\varepsilon_i = \sigma_{\mu}/\sigma_{\eta}$ $arepsilon_{i,t} + \psi_i$ is the sum of two asymmetric normal distributions and then admits a known density. It is, therefore, possible to define the function of the log-likelihood and to deduce from it the MLE of the parameters. However, the complexity of the likelihood function, which, in his form, involves T_i integrations, makes very hard the implementation in practice.³⁴ Hence, Filippini and Greene (2016) propose a computation method based on Butler and Moffitt (1982) formulation to simplify the log-likelihood function and subsequently estimate the MLE using a simulationbased optimization. With the same assumptions on the parameters as before, the idea is to obtain the conditional density $f(\varepsilon_i/\psi_i)$, which is defined on ψ_i . Unlike the previous case, the manipulation, then, involves only one integration. To simplify the implementation of the estimation, we use the multi-step procedure of Kumbhakar et al. (2014).³⁵ The model based on equation 1 is estimated in three stages:

In stage 1, a standard random-effect based regression is used to estimate $\hat{\beta}$ and predicts the values of $\varepsilon_{i,t}$ and ψ_i . We estimate the following equation:

$$\tau_{i,t} = \alpha^* + f(X_{i,t}, \beta) + \varepsilon_{i,t} + \psi_i$$
 (2.2)

³³ We use the logarithm of non-resource tax-to-GDP as dependent. The predictor variables, except the real GDP per capita, are scaled to unit *i.e.*, in percent of GDP and not in logarithm. By doing so, we do not assume implicitly the functional form linking the output to the inputs. The *log-log* form is the most used in the stochastic frontier literature. Note that our results remain robust to the use of the log-log form.

³⁴ For these authors, a direct optimization of the log-likelihood of the model appears complex.

³⁵ Kumbhakar *et al.* (2015).

Where
$$\alpha^* = \alpha - E(\eta_i) - E(\varphi_{it})$$
, $\psi_i = \mu_i - \eta_i + E(\eta_i)$, $\varepsilon_{i,t} = v_{i,t} - \varphi_{i,t} + E(\varphi_{i,t})$, $E(\eta_i) = \sqrt{\frac{2}{\pi \sigma_{\eta'}}}$, and $E(\varphi_{i,t}) = \sqrt{\frac{2}{\pi \sigma_{\varphi}}}$.

In stage 2, by performing a standard stochastic frontier technique, the time-varying tax inefficiency $\varphi_{i,t}$ is estimated using the predicted values of $\varepsilon_{i,t}$ from the first stage. Following Battese and Coelli (1988), this procedure gives the prediction of the time-varying tax effort $\exp(-\varphi_{i,t}|\varepsilon_{i,t})$.

In stage 3, we estimate the persistent tax inefficiency component, denoted by η_i by performing a stochastic frontier model as in the previous stage. The persistent tax effort is then defined by $\exp(-\eta_i)$.

Finally, the overall tax effort is obtained by the product of the *time-varying* tax effort and the persistent tax effort.

Considering the relevant literature on the determinants of domestic resource mobilization, we identify the following driving factors of government tax revenue and consider them as inputs $X_{i,t}$:

- The level of development: Countries' tax capacity depends on their level of economic development assessed through the level of real GDP per capita. High-income countries should raise more tax revenue than developing countries since they have more efficient tax administration, better institutions, and a higher demand for public goods and services (see Lotz and Morss, 1967; Pessino and Fenechietto, 2010; Crivelli and Gupta, 2014).
- Trade openness: Trade liberalization policies implemented in most developing countries starting in the early 1970s and stretching well into the 1990s have substantially increased trade volume in these countries. Therefore, trade openness expressed as total trade (value of imports and exports) as a share of GDP is expected to positively influence tax revenue through households' consumption and domestic corporate profits. This reinforces the role of customs administration in collecting taxes, both the external tariff and domestic taxes, on imported goods (see Stotsky and WoldeMariam, 1997; Pessino and Fenechietto, 2010; Gnangnon and Brun, 2018 among others).

- Agriculture value-added as a percent of GDP: Agriculture is often largely tax-exempt in SSA countries from income taxes and other production taxes, and is frequently either tax exempt or out-of-scope of VAT. The first argument in favor of this treatment is that the sector is dominated by small and medium-size farmers that are scattered across geography, and hence hard to tax; and even if taxes can be effectively levied, such farmers cannot be significant contributors to tax revenues. 36 A second explanation is the political will to reduce foodstuff prices in order to limit the risk of malnutrition or even famine. This assumes a tax incidence close to one, which means an almost perfectly competitive market. However, the tax (VAT mainly) exemptions of foodstuffs involve the inability of farmers to deduce the VAT paid on their inputs. The collected VAT on the intermediary consumption of farmer can generate some revenue and may have then an ambiguous effect of total tax revenue.
- Natural resource rent as a percent of GDP: The negative effect of natural resource rent on tax revenue is widely evidenced in the literature. Natural resource endowment is associated with lower tax revenue (Sachs and Warner, 2001; Eltony, 2002; Belinga *et al.*, 2007). During commodity prices upswings, governments in resources-rich countries have less incentive to mobilize other tax revenues; resource rent crowds-out tax revenue (Bornhorst *et al.*, 2009, Crivelli and Gupta, 2014, James, 2015) or an inter-ministerial tax competition occurs (Caldeira *et al.*, 2020).
- Financial development: Financial development may favor higher tax collection (see Gordon and Li, 2009). Combined with improved access to credit, it allows individuals and companies to finance profitable projects and improve the national information system on economic activities—hence, favor tax collection. On the other hand, in a presence of an ineffective financial system, firms could successfully evade tax payment by conducting business in cash, which is harder for tax administrations to monitor.
- Aid received: In the literature, empirical studies on the relation between aid and taxes are quite not consensual. While some studies emphasize a positive effect of aid on tax revenue mobilization (see *e.g.*, Brun *et al.*, 2008; Clist and Morrissey, 2011; Morrissey *et al.*, 2014 among others), other works including Pack and Pack (1990), Azam *et al.* (1999), Pivovarsky

³⁶ The improvement in technologies for farming, including in SSA, and the increase of large farming firms over the past two decades, weaken such arguments. Nevertheless, countries have been very slow in rethinking the taxation of agriculture.

et al. (2003), and Benedek et al. (2012) find a negative relationship. For instance, Diakité et al. (2019), focusing on conflict-affected countries, show that aid granted during a period of conflict has a positive impact on revenue collection, and this effect is important when aid is coupled with technical assistance and appears to be non-linear.

Descriptive statistics and more details on variables' sources and definitions are provided in Appendix 2.2 and 2.3, respectively. Figure 2.3 displays scatter a plot of total *non-resource* tax revenue for each of the explanatory variables used in the baseline specification. These graphs tend to confirm the expected relationships.

Figure 2.3. Correlation between Total *Non-resource* Tax Revenue and Covariates

Source: Tax revenue Dataset for SSA, World Development Indicators, and authors' calculations.

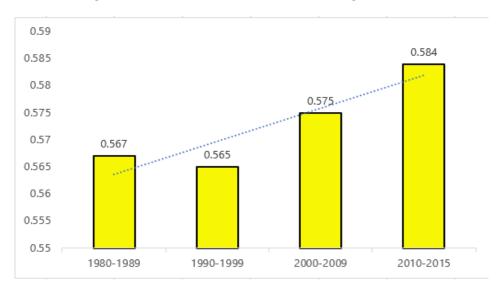
2.5. Results

Table 2.1 displays the three-stage estimation results.³⁷ Dependent variables in column (1) to column (4) are total *non-resource* tax revenue, total income taxes, corporate income tax, and personal income tax, respectively. In line with previous studies (Stotsky and WoldeMariam, 1997; Gordon and Li, 2009; Pessino and Fenochietto, 2010; Crivelli and Gupta, 2014) all the variables have the expected sign and are statistically significant. The coefficients associated with the level of development (*i.e.*, GDP per capita, logged) and trade openness (logged) are positive and significant at the one-percent level. More precisely, a one percentage increase in per-capita GDP is associated with an increase in the total tax revenue by 0.003 percentage points. Similarly, an increase of one percent in the total trade-to-GDP ratio is associated with a rise in non-resource tax ratio of 0.002 percentage points. Agriculture and natural resources sectors harm tax revenue collection. The coefficients associated with these variables are all negative and statistically significant and are consistent with previous analyses (Stotsky and WoldeMariam, 1997; Sachs and Warner, 2001; Eltony, 2002; Brun *et al.*, 2014; Belinga *et al.*, 2017). These results also hold mostly for tax revenue subcomponents columns (2)-(4).

For the rest of the analysis (stages 2 and 3), we consider the total non-resource tax revenue as the dependent variable (*i.e.*, column 1). Panel A and Panel B of Table 2.1 report the second and third stages. We then deduce the time-varying and persistent tax effort scores, and we compute the total tax effort (Panel C). The higher is the tax effort score, the closer is the country to the "frontier". Table A4 presents the summary of tax effort for columns (2) -(4).

³⁷ We exclude Zimbabwe from the sample in all regressions.

Table 2.1. The three-stage Estimation Results


Dependent variable: NRTax ratio				
	NRTAX	Direct	CIT	PIT
	(1)	(2)	(3)	(4)
GDP per capita (log) ₍₋₁₎	0.265***	0.407***	0.331***	0.410***
	(0.0301)	(0.0450)	(0.0596)	(0.0695)
Total trade (% GDP) ₍₋₁₎	0.002***	0.005***	0.008***	0.004***
	(0.0004)	(0.0006)	(0.0010)	(0.0011)
Agriculture value added (% GDP) ₍₋₁₎	-0.003**	-0.007***	0.002	-0.022***
	(0.0014)	(0.0021)	(0.0029)	(0.0033)
Total natural resource rent (% GDP) ₍₋₁₎	-0.002*	-0.002	-0.001	-0.008**
	(0.0014)	(0.0020)	(0.0029)	(0.0035)
Constant	0.579**	-1.832***	-2.622***	-2.265***
	(0.2299)	(0.3435)	(0.4537)	(0.5285)
Observations	1165	1,165	1,086	1,081
R-squared	0.163	0.240	0.142	0.183
Number of countries	39	39	38	38

Panel A: Stage 2 - Estimation of the Time-varying Tax Inefficiency (Stochastic Frontier)							
				Number of o	bs.	1165	
				Wald chi2(1)		317.84	
Log likelihood = 104.87				Prob > chi2		0.0000	
	Coef.	Std. Err.	Z	P> z	[95% Co	nf. Interval]	
frontier (one)	0.215	0.012	17.830	0.000	0.191	0.239	
usigmas (_cons)	-2.597	0.106	-24.520	0.000	-2.804	-2.389	
vsigma (_cons)	-3.759	0.100	-37.690	0.000	-3.954	-3.563	
Panel B: Stage 3 - Estimati	on of the F	ersistent Ta	x Inefficien	cy (Stochastic	Frontier)		
				Number of o	bs.	1165	
				Wald chi2(1)		1400.00	
Log likelihood = -371.66				Prob > chi2		0.0000	
	Coef.	Std. Err.	Z	P> z	[95% Co	nf. Interval]	
frontier (one)	0.446	0.012	37.420	0.000	0.423	0.470	
usigmas (_cons)	-1.275	0.060	-21.340	0.000	-1.392	-1.158	
vsigma (_cons)	-3.790	0.116	-32.630	0.000	-4.018	-3.563	
Panel C: Summary of Tax	Effort Estin	nation Resul	ts				
		Obs.	Mean	Std. Dev.	Min	Max	
Time-varying tax effort		1165	0.817	0.092	0.318	0.967	
Persistent tax effort		1165	0.698	0.167	0.101	0.942	
Total tax effort		1165	0.572	0.153	0.057	0.847	

^{*, ***,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: NRTAX: Total non-resource tax revenue; Direct: Total income tax revenue; CIT: Corp orate income tax revenue; PIT: Personal income tax revenue.

The full sample average stands at 0.817 and 0.698 for time-varying and persistent tax effort, respectively over 1980-2015. The average total tax effort score is equal to 0.572, suggesting that SSA countries mobilize 57 percent of their tax potential. In other words, given their

economic features, SSA countries would raise on average 23.16 percent of GDP of non-resource taxes if they fully used their tax potential, rather than the actual 13.22 percent. Furthermore, it is worth underscoring that time-varying factors account for only 36 percent of the total tax effort. Thus, SSA countries would gain significant additional tax revenue by addressing issues related to time-varying factors. In the sample, the minimum tax effort score is 0.057 (Equatorial Guinea in 2011) and the maximum is 0.847 (Burundi in 1998). Note that the tax effort has improved slightly over the period (Figure 2.5)—from 0.57 during 1980-1989 to 0.58 during the most recent period. An important result is that the number of countries that have improved their tax effort over time is significantly higher than those for which the tax effort has declined (Figure 2.6).

Figure 2.4. Tax Effort over Time (Average Values)

Source: Tax revenue Dataset for SSA and authors' calculations.

In Figure 2.6, we show the evolution of countries tax effort. Most of SSA countries have improved their tax effort over time, particularly Uganda, Sierra Leone, and Senegal.

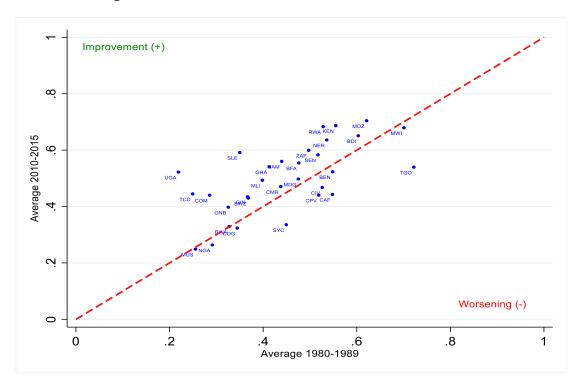


Figure 2.5. Evolution of Countries Tax Effort Over Time

Source: Tax revenue Dataset for SSA and authors' calculations.

Table 2.2 provides a country ranking over different sub-periods (1980-1989, 1990-1999, 2000-2009, and 2010-2015) based on total tax effort scores. Focusing on the last sub-period (*i.e.*, 2010-2015), it emerges that Mozambique, Togo, Burundi, Senegal, and The Gambia are top performers with a tax effort score of 0.804, 0.774, 0.769, and 0.755, and 0.742 respectively, while the five poor performers over the sub-period are Congo Republic (0.361), Chad (0.325), Gabon (0.319), Nigeria (0.232) and Equatorial Guinea (0.071). The *non-resource* tax to GDP has a decreasing trend in Equatorial Guinea, Congo Republic and Gabon. These countries rely a lot and increasingly on revenue from natural resources. As for Nigeria and Chad, they have generally a non-resource tax below 7 percent of GDP over the period 1980-2015.

The poverty level in Mozambique and Burundi paradoxically explains their performance in terms of tax effort. Table 2.1 highlights the crucial role of GDP per capita to determine the tax revenue to GDP ratio. The coefficient of this variable is not only highly significant, but its level is more important. Togo (as Benin) has a substantial transit activity with Nigeria. Given the Nigerian trade policy to foster domestic production especially (for instance, rice and wax fabrics) or for other considerations (such as environmental and security reason for second-

hand cars), some goods subject to high tariff rates are imported in Togo and then smuggled to Nigeria. These importations raise revenue in terms of tariffs and VAT even if these goods are not consumed in Togo.

Table 2.2. Full Sample Tax Effort-based Ranking (Baseline Specification)

	1980-1989		1990-19	1990-1999		2000-2009		2010-2015		
Country	Tax Effort	Rank	Tax Effort	Rank	Tax Effort	Rank	Tax Effort	Rank	Average Tax Ratio	
Angola	-	-	0.265	34	0.279	36	-	-	8.197	
Benin	0.616	14	0.627	12	0.691	8	0.696	12	14.672	
Botswana	0.390	28	0.361	30	0.411	30	0.455	31	20.963	
Burkina Faso	0.611	15	0.660	10	0.689	9	0.702	11	13.150	
Burundi	0.757	5	0.806	1	0.792	1	0.769	3	13.402	
Cabo Verde	0.543	19	0.605	16	0.619	19	0.589	22	18.706	
Cameroon	0.474	24	0.482	25	0.532	26	0.548	28	12.745	
Central African Republic	0.607	16	0.560	21	0.569	23	0.557	26	7.795	
Chad	0.241	32	0.312	31	0.314	32	0.325	34	5.994	
Comoros	0.557	18	0.605	15	0.593	21	0.603	21	11.469	
Congo, Dem. Rep.	-	-	-	-	-	-	-	-	9.142	
Congo, Rep.	0.422	26	0.375	29	0.307	34	0.361	33	10.867	
Cote d'Ivoire	0.730	6	0.682	9	0.645	13	0.624	15	14.019	
Equatorial Guinea	-	-	-	-	0.082	37	0.071	37	2.794	
Ethiopia	-	-	-	-	-	-	0.724	8	12.010	
Gabon	-	-	-	-	0.310	33	0.319	35	11.584	
Gambia, The	-	-	-	-	0.735	3	0.742	5	14.933	
Ghana	0.391	27	0.480	26	0.534	25	0.550	27	14.820	
Guinea	0.494	22	0.422	28	0.521	27	0.570	25	13.383	
Guinea-Bissau	0.382	29	0.303	32	0.380	31	0.422	32	8.147	
Kenya	0.674	8	0.704	6	0.702	7	0.714	10	15.608	
Lesotho	0.808	1	-	-	-	-	-	-	40.971	
Madagascar	0.638	11	0.574	19	0.626	18	0.607	19	9.797	
Malawi	0.793	3	0.752	3	0.686	10	0.740	6	14.017	
Mali	0.620	13	0.585	17	0.634	17	0.617	17	10.846	
Mauritius	0.541	20	0.492	24	0.461	29	0.462	30	18.276	
Mozambique	0.702	7	0.685	8	0.663	12	0.804	1	19.952	
Namibia	0.634	12	0.717	5	0.708	5	0.734	7	31.133	
Niger	0.604	17	0.546	22	0.640	14	0.689	13	12.585	
Nigeria	0.259	31	0.269	33	0.298	35	0.232	36	4.867	
Rwanda	0.659	9	0.623	14	0.703	6	0.717	9	13.704	
Sao Tome and Principe	-	-	-	-	-	-	-	-	15.403	
Senegal	0.658	10	0.689	7	0.739	2	0.755	4	19.041	
Seychelles	0.784	4	0.767	2	0.635	16	0.583	24	30.933	
Sierra Leone	0.318	30	0.448	27	0.517	28	0.516	29	9.327	
South Africa	0.491	23	0.573	20	0.585	22	0.587	23	22.829	
Swaziland	0.519	21	0.542	23	0.606	20	0.633	14	25.526	
Tanzania	-	-	0.649	11	0.558	24	0.605	20	10.821	
Togo	0.799	2	0.625	13	0.729	4	0.774	2	15.895	
Uganda	0.452	25	0.578	18	0.638	15	0.616	18	11.278	
Zambia	-	-	0.719	4	0.671	11	0.623	16	14.583	

Source: Tax revenue Dataset for SSA and authors' calculations

Natural resource endowment, especially oil, significantly reduces the computed tax effort (see Figure and 7a). The worst performers are *resource-rich* SSA countries (Nigeria, Equatorial Guinea) given the crowding out effect (Bornhorst *et al.*, 2009, Crivelli and Gupta, 2014, James, 2015) or the inter-ministerial tax competition weakening the institution in charge of tax policy (Caldeira *et al.*, 2020).

For robustness purpose, specifically, to deal with the omitted variables bias, we control successively for the financial development and for official development assistance. The three-stage estimation results are reported in Appendix 2.5 and 2.7, respectively. For each variable, the summary of tax effort for tax subcomponents – columns (2)–(4) – is reported in Appendix 2.6 and Appendix 2.8, respectively.

Focusing on *non-resource* tax, the average total effort does not change when controlling for financial development: the average tax effort remains 0.572. The top performers in the subperiod 2010-2015 also remain unchanged, namely Togo, Senegal, ³⁸ Burundi, and The Gambia. These countries are resources poor, and their tax potential is particularly low (except for Senegal) given their level of poverty and the share of their agricultural sector in their respective GDP. Moreover, Togo and The Gambia raise significant revenue from the transit activities towards landlocked countries or regions. The average tax effort scores for subcomponents are slightly higher (+0.01) than those from the baseline results.

Controlling for development aid received results in a slight change in the average tax effort the average tax effort varies from 0.572 to 0.570. The top performers over the sub-period 2010-2015 are Burundi, Togo, Senegal, and Namibia.³⁹ The average effort to collect direct tax increases driven by an increase in the effort to collect personal income tax and a decrease in the effort to collect corporate income tax.

To test the sensibility of our results to the change of production technology between the *non-resource* tax and its determinants, we use the *log-log* functional form. The average tax effort varies from 0.572 to 0.571 for the baseline estimation (see Table 2.1 and Appendix 2.9). The

³⁸ Note that Senegal comes one place higher.

³⁹ Namibia replaces The Gambia as the fifth.

average tax efforts are 0.581 and 0.566 when using the *log-log* specification and controlling for financial development and official development assistance, respectively.

To further test the robustness of our results, we compute the tax effort using some second general stochastic frontier models.⁴⁰ We first estimate tax effort using the model of Battese and Coelli (1992). The average tax effort is 0.573 relying on the baseline.

The average tax effort is 0.626 and 0.576 when controlling respectively for financial development and development assistance and aid. Using the model of Kumbhakar (1990), the average tax effort becomes 0.493 for the baseline model, and 0.626 and 0.587 when controlling for financial development and official development assistance, respectively.

2.6. Replications

Our analysis participates explicitly to the replication effort, which ensures the reliability of produced works. Over recent years, there has been a growing interest in replication, particularly in economic research.⁴¹ Following Hamermesch (2007) and Clemens (2017) approach, we undertake a replication of two papers analyzing tax effort: Gupta (2007) and Fenechietto and Pessino (2013). This replication approach consists in three stages: verification, reproduction, and robustness. Verification means the use of the same sample, population, and empirical specification, ⁴² while reproduction uses the same econometric model on different samples from

⁴⁰ Second-generation models have their limitation in measuring inefficiency, hence our choice of Generalized True Random Effects model. While they allow for time-varying inefficiency, hence improvement over time, the intercept is the same across all countries. Unfortunately, in the presence of time-invariant unobservable factors, they are subject to misspecification bias. Moreover, they are not fitted to deal with heterogeneity between countries. For more discussion, see Wang (2002), Green (2005), and Belotti and Ilardi (2018).

⁴¹ For instance, the top five Reviews in Economics, for a paper to be accepted and published, request the inputs including dataset and program of the paper for replication purpose (Sukhtankar, 2017). The American Economic Review particularly has dedicated a whole volume to replication. In addition, Anderson and Kichkha (2017)], after a discussion of the three main methods of research synthesis (*i.e.*, traditional literature surveys, meta-analysis and replication), *argue that only pure replication does not contain a substantial judgement*.

⁴² Hamermesch (2007) calls this procedure.

the same population.⁴³ Regarding robustness,⁴⁴ it consists either in running the same specification on different samples and populations or applying different econometric specifications on the same sample and population. In our replication exercise, 45 we estimate the same specification for the same sample (same countries and period) as in the original paper for the verification. The reproduction consists in running the same specification on the same sample of countries but including all the available observations for the variables used in the author(s)'s specification(s). Finally, for the robustness, we expand the sample and the time period by using all the countries and years on which data are available to test the author(s)'s specification(s). It is worth mentioning that some differences with respect to the original paper on variables characteristics (i.e., mean, standard deviation, minimum and maximum) emerge even though the sources are the same. This could be due to changes and adjustments in dataset over time. These differences could be also related to some minor treatments by the authors during the dataset compilation, which are not reported in the paper. Furthermore, in the case we do not find a variable from the same source as the author, we take one from another source, if applicable. Otherwise, if the variable is not used in the baseline specification, we do not run the regression for that given specification.

2.6.1. Replication of Gupta (2007)

The author estimates countries' revenue potential for a panel of 105 developing countries over the period 1980-2004 using central government revenue dataset. The estimates explained the ratio of central government revenue (excluding grants) to GDP as a function of a set of structural variables (*i.e.*, the log of per capita GDP, the share of agriculture in GDP, the ratio of imports to GDP, the share of aid and debt in GDP) and politico-institutional variables

 $^{^{43}}$ For Hamermesch (2007), this is called a statistical replication.

⁴⁴ Hamermesch (2007).

⁴⁵ Our replication process is applied based on the following conditions: First, the paper must be an empirical investigation of countries' tax effort (*i.e.*, employing econometric specification) with an actual computation of tax effort. Second, it must be an international comparison of tax effort among countries. In addition, we choose not to replicate a number of seminal papers on tax effort prior to the 1990s such as Bahl, (1971, 1972), Chelliah (1971), Chelliah, Baas, and Kelly (1975), Leuthold (1991), Lotz and Morss (1970), Tait, Grätz, and Eichengreen (1979).

(corruption, law and order, government stability, political stability and economic stability). An important limitation of this paper is the inclusion of natural resources revenue into tax revenue. Gupta (2007) uses various methods of panel data estimation including Fixed Effect (FE), Random Effects (RE), Common Correlation Coefficient (CCC), Panel Specific Correlation (PSC), and Dynamic Panel Specification (DPS). The results show that the per capita GDP, trade openness, and the share of agriculture in GDP are statistically significant and strong determinants of countries revenue performance. In addition, certain forms of foreign aid improve revenue performance while external debt does not. Regarding politico-institutional factors, the author found that political and economic stability affect revenue performance positively revenue performance, and corruption significantly and negatively alters revenue performance. The author also emphasizes that countries' tax revenue performance depends on their tax structure. More precisely, countries that depend on indirect taxation as their main source of tax revenue, tend to perform less than countries raising more from direct taxation.

We replicate the key specifications despite a few issues with some variables (economic stability, political stability, and average tariff). The verification test failed to replicate the exact results as in the paper in terms of coefficient and significance of the variables. We have more significant variables than in the original paper (see Appendix 2.6 and 2.7).⁴⁶ Moreover, the robustness exercise yields smaller coefficients for all the variables than in the paper, suggesting a smaller effect when non-resources tax is used instead of central government revenue, and when the sample is expanded to all available countries and years (see Appendix 2.8 and 2.9).

2.6.2. Replication of Fenochietto and Pessino (2013)

Fenochietto and Pessino (2013) estimated countries tax capacity and tax effort using a Stochastic Frontier Analysis for 113 countries. They first estimated the tax capacity for 96 non-natural resources dependent countries and then on the whole sample using tax and pension

⁴⁶ Although we replicated all the forms of panel data estimations, we present the results for the common correlation coefficient and the panel specific correlation estimations. The reason is that the author expressed his preference for these results in the paper (see Gupta, 2007 p. 26).

contributions revenue collected by central and sub-national governments as percent of GDP from the IMF's WEO. The authors considered a set of structural and institutional variables (level of development, inflation, education, trade, income inequality, corruption, and the ease of tax collection) explaining countries' tax capacity and estimated tax effort using Battese and Coelli (1992) Half Normal (HN) and Truncated Normal (TN) models incorporating heterogeneity. They also relied on Mundlak (1978) Random Effects Model (REM) to deal with the 'unobserved' heterogeneity.

Our verification test on this paper yield almost the same results: the sign and the magnitude are close. As in the paper, the coefficients for non-resource countries are slightly lower than those for all countries (First two columns of Appendix 2.10 and 2.11).

For the robustness analysis, in addition to broadening the sample to all available countries and year while replacing the dependent variable with the ICTD non-resource tax, we also estimate the parameters of Stochastic Frontier (SF) tax function for ICTD non-resource tax while limiting it to the non-resource dependent countries defined in the paper. The robustness results show stable coefficients for all the variables. Nevertheless, the logarithm of the GDP per capita and the logarithm of the GDP per capita square do not have the expected sign or are not significant. We went further in robustness analysis, by relaxing the nonlinear relationship assumption between tax revenue and GDP per capita. Thus, we dropped the logarithm of the GDP per capita squared from the specification. Results in last two columns of Appendix 2.10 and 2.11 show that once we relax the nonlinear relationship assumption, all the variables get the expected sign.

2.7. Conclusion

In this chapter, we offer a new dataset of tax revenue, which updates and completes the dataset published in Mansour (2014). We collect statistical information from the African Department of the International Monetary Fund (IMF), most of which is publicly available, covering 42 SSA countries over the period 1980-2015 and distinguishing resource revenue from non-resource (tax) revenue. This work participates to recent efforts to better apprehend tax revenues in Sub-

Saharan Africa, in particular the revenue statistics in Africa from the OECD, the Government Revenue Dataset initiated by the International Centre for Tax and Development (ICTD) and updated by UNU-WIDER.

We provide an estimate of tax effort adopting the Stochastic Frontier Analysis approach. First, we confirm the impact of previously studied factors on countries' DRM capacity such as level of development, financial development, trade openness, natural resource rent, and the size of the agriculture sector. The two latter factors have a negative effect on the domestic revenue mobilization capacity. We estimate on average the total tax effort to be 0.58. Given that non-resource tax revenue amounts to 13.2 percent of GDP, potential tax revenue would be on average 22.75 percent of GDP. Mozambique, Burundi, Togo, Senegal, and The Gambia are top performers with a tax effort score above 0.75, while the five lowest performers are resource-rich countries such as Congo Republic (0.366), Chad (0.333), Gabon (0.327), Nigeria (0.243) and Equatorial Guinea (0.073). The poverty level in Mozambique and Burundi explains paradoxically their performance in terms of tax effort. Finally, we did some replication analyses of previous works on tax effort, in particular Gupta (2007) and Fenechietto and Pessino (2013). We fail to replicate the results of Gupta (2007) in terms of robust coefficients and significance of the variables. Some explanatory variables are missing. However, we confirm broadly the analysis of Fenechietto and Pessino (2013).

Appendices

Appendix 2.1. Country List

Angola, Benin, Botswana, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon, Central African Republic, Chad, Comoros, Congo, Dem. Rep., Congo, Rep., Côte d'Ivoire, Equatorial Guinea, Ethiopia, Gabon, Gambia, The, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Madagascar, Malawi, Mali, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Seychelles, Sierra Leone, South Africa, Swaziland, São Tomé and Principe, Tanzania, Togo, Uganda, Zambia, Zimbabwe

Appendix 2.2. Data Sources and Definition

Variables	Definition	Sources
Total non-resource tax (% GDP)	Total tax revenues excluding resource rent	
Corporate income tax (% GDP)	Tax imposed on corporate income in countries that have a corporate tax	Tax revenue dataset,
Total direct taxes (% GDP)	Taxes on all income sources (<i>i.e.</i> , business profits, wages, portfolio income, income from real property, capital gains, etc.)	Mansour (2019)
Personal income taxes (% GDP)	Taxes on individual income	
Total resource rent (% GDP)	Sum of oil rents, natural gas rents, coal rents (hard and soft), mineral rents, and forest rents over GDP.	
GDP PC (constant 2010 US \$)	Sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products	
Total Trade (% GDP)	Volume of imports and exports over GDP	
Agriculture, value added (% GDP)	Net output of forestry, hunting, and fishing, as well as cultivation of crops and livestock production after adding up all outputs and subtracting intermediate inputs, divided by GDP	World Development Indicators, World Bank
Gini index	Index measuring the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution	WOTILL BATIK
Net official development	Net official development assistance is disbursement flows	
assistance and official aid received (% GDP)	(net of repayment of principal). Net official aid refers to aid flows (net of repayments).	
Financial development index	Aggregate of nine indices that summarize how developed financial institutions and financial markets are in terms of their depth, access, and efficiency.	Svirydzenka (2016)

Appendix 2.3. Descriptive Statistics

Variables	Obs.	Mean	Std. Dev.	Min	Max
Total Taxes	1473	16.19	8.97	0.57	53.33
Total non-resource taxes (% GDP)	1473	13.22	7.09	0.55	50.81
Total income taxes	1473	3.89	2.74	0.18	18.69
Corporate Income Tax	1373	1.64	1.24	0.00	9.06
Personal Income Tax	1368	1.84	1.79	0.00	13.33
GDP per capita (constant 2010 US\$)	1474	1892.50	2780.36	131.65	20333.94
Total trade (% of GDP)	1323	71.3	36.48	6.32	265.98
Agriculture, value added (% of GDP)	1345	27.42	15.70	0.89	72.03
Total natural resources rents (% of GDP)	1431	11.61	11.92	0.00	89.17
Financial development (% of GDP)	1435	0.11	80.0	0.00	0.64
Net ODA and aid received (% of GDP)	1448	10.79	10.49	-0.25	94.44

Source: Authors' calculations

Appendix 2.4. Summary of Tax Effort Estimation Results - Baseline Estimation (2)-(4)

Dependent	Tax Effort Components	Obs.	Mean	Std. Dev.	Min	Max
	Time-varying tax effort	1165	0.756	0.109	0.223	0.936
Direct	Persistent tax effort	1165	0.620	0.157	0.064	0.866
	Total tax effort	1165	0.470	0.139	0.031	0.755
	Time-varying tax effort	1086	0.701	0.114	0.092	0.919
CIT	Persistent tax effort	1086	0.443	0.221	0.045	1.000
	Total tax effort	1086	0.311	0.165	0.019	0.834
	Time-varying tax effort	1081	0.648	0.148	0.031	0.940
PIT	Persistent tax effort	1081	0.539	0.182	0.035	0.834
	Total tax effort	1081	0.350	0.142	0.006	0.676

Source: Authors' calculations

Appendix 2.5. The Three-stage Estimation Results: Controlling for Financial Development

Dependent variable: NRTax ratio				
	NRTAX	Direct	CIT	PIT
	(1)	(2)	(3)	(4)
GDP per capita (log) ₍₋₁₎	0.228***	0.337***	0.288***	0.339***
	(0.0309)	(0.0459)	(0.0617)	(0.0716)
Total trade (%GDP) ₍₋₁₎	0.001***	0.004***	0.008***	0.004***
	(0.0004)	(0.0006)	(0.0010)	(0.0011)
Agriculture value added (%GDP) (-1)	-0.003**	-0.007***	0.002	-0.021***
	(0.0014)	(0.0021)	(0.0029)	(0.0033)
Total natural resource rent (%GDP) (-1)	-0.001	-0.000	-0.000	-0.007*
	(0.0014)	(0.0021)	(0.0029)	(0.0035)
Financial development (-1)	0.776***	1.259***	0.666	1.070**
	(0.1821)	(0.2718)	(0.4225)	(0.4803)
Constant	0.739***	-1.500***	-2.411***	-1.912***
	(0.2303)	(0.3418)	(0.4534)	(0.5273)
Observations	1165	1165	1,086	1,081
R-squared	0.170	0.245	0.140	0.181
Number of countries	39	39	38	38

Panel A: Stage 2 - Estima	tion of the	e Time-vary	ying Tax Ir	nefficiency (Stocha	stic Fronti	er)
				Number of obs.		1165
				Wald chi2(1)		318.74
Log likelihood = 111.52				Prob > chi2		0.0000
	Coef.	Std. Err.	Z	P> z	[95% Cor	nf. Interval]
frontier (one)	0.214	0.012	17.850	0.000	0.191	0.238
usigmas (_cons)	-2.605	0.106	-24.640	0.000	-2.813	-2.398
vsigma (_cons)	-3.773	0.100	-37.740	0.000	-3.969	-3.577
Panel B: Stage 3 - Estima	tion of the	e Persistent	Tax Ineffi	iciency (Stochastic	Frontier)	
				Number of obs.		1165
				Wald chi2(1)		1568.67
Log likelihood = -339.46				Prob > chi2		0.0000
	Coef.	Std. Err.	Z	P> z	[95% Cor	nf. Interval]
frontier (one)	0.445	0.011	39.610	0.000	0.423	0.467
usigmas (_cons)	-1.278	0.058	-22.180	0.000	-1.391	-1.165
vsigma (_cons)	-4.016	0.125	-32.070	0.000	-4.261	-3.770
Panel C: Summary of Tax	Effort Est	timation Re	sults			
		Obs.	Mean	Std. Dev.	Min	Max
Time-varying tax effort		1165	0.818	0.091	0.322	0.968
Persistent tax effort		1165	0.698	0.171	0.108	0.946
Total tax effort		1165	0.572	0.156	0.061	0.848

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: NRTAX: Total non-resource tax revenue; Direct: Total income tax revenue; CIT: Corporate income tax revenue; PIT: Personal income tax revenue.

Appendix 2.6. Summary of Tax Effort Estimation Results – Robustness Check: Controlling for Financial Development (2)-(4)

Dependent	Tax Effort Components	Obs.	Mean	Std. Dev.	Min	Max
	Time-varying tax effort	1165	0.757	0.108	0.209	0.941
Direct	Persistent tax effort	1165	0.637	0.152	0.080	0.874
	Total tax effort	1165	0.483	0.136	0.038	0.766
	Time-varying tax effort	1086	0.700	0.115	0.088	0.919
CIT	Persistent tax effort	1086	0.456	0.217	0.054	1.000
	Total tax effort	1086	0.320	0.164	0.019	0.840
	Time-varying tax effort	1081	0.646	0.149	0.030	0.941
PIT	Persistent tax effort	1081	0.555	0.177	0.045	0.838
	Total tax effort	1081	0.360	0.141	0.006	0.676

Sources: Authors' calculations

Appendix 2.7. The Three-stage Estimation Results: Controlling for ODA and Aid

Dependent variable: NRTax ratio				
	NRTAX	Direct	CIT	PIT
	(1)	(2)	(3)	(4)
GDP per capita (log) ₍₋₁₎	0.253***	0.367***	0.280***	0.324***
	(0.0325)	(0.0483)	(0.0643)	(0.0755)
Total trade (% GDP) ₍₋₁₎	0.002***	0.005***	0.009***	0.004***
	(0.0004)	(0.0006)	(0.0010)	(0.0012)
Agriculture value added (%GDP) ₍₋₁₎	-0.003**	-0.007***	0.001	-0.022***
	(0.0014)	(0.0021)	(0.0030)	(0.0034)
Total natural resource rent (% GDP) ₍₋₁₎	-0.002	-0.001	-0.000	-0.006*
	(0.0014)	(0.0020)	(0.0029)	(0.0035)
ODA (% GDP) ₍₋₁₎	-0.001	-0.006***	-0.008***	-0.009***
	(0.0011)	(0.0017)	(0.0025)	(0.0027)
Constant	0.669***	-1.539***	-2.209***	-1.603***
	(0.2491)	(0.3696)	(0.4939)	(0.5760)
Observations	1137	1137	1062	1057
R-squared	0.159	0.251	0.155	0.175
Number of countries	39	39	38	38

Panel A: Stage 2 - Estimation of the Time-varying Tax Inefficiency (Stochastic Frontier)									
				Number of obs.		1137			
				Wald chi2(1)		305.96			
Log likelihood = 106.30				Prob > chi2		0.0000			
	Coef.	Std. Err.	Z	P> z	[95% Coı	nf. Interval]			
frontier (one)	0.213	0.012	17.490	0.000	0.189	0.237			
usigmas (_cons)	-2.617	0.108	-24.270	0.000	-2.828	-2.406			
vsigma (_cons)	-3.752	0.099	-37.750	0.000	-3.947	-3.557			

Panel B: Stage	3 - Estimation	of the Persistent	Tax Inefficiency	(Stochastic I	rontier)
----------------	----------------	-------------------	------------------	---------------	----------

				Number of obs.		1137
				Wald chi2(1)		1387.37
Log likelihood = -376.46				Prob > chi2		0.0000
	Coef.	Std. Err.	Z	P> z	[95% Cor	nf. Interval]
frontier (one)	0.451	0.012	37.250	0.000	0.427	0.475
usigmas (_cons)	-1.233	0.060	-20.640	0.000	-1.350	-1.116
vsigma (_cons)	-3.819	0.120	-31.760	0.000	-4.055	-3.583

Panel C: Summary of Tax Effort Estimation Results

	Obs.	Mean	Std. Dev.	Min	Max
Time-varying tax effort	1137	0.819	0.090	0.319	0.967
Persistent tax effort	1137	0.694	0.170	0.099	0.941
Total tax effort	1137	0.570	0.155	0.056	0.842

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: NRTAX: Total non-resource tax revenue; Direct: Total income tax revenue; CIT: Corporate income tax revenue; PIT: Personal income tax revenue.

Appendix 2.8. Summary of Tax Effort Estimation Results – Robustness Check: Controlling for ODA and Aid (2)-(4)

Dependent	Tax Effort Components	Obs.	Mean	Std. Dev.	Min	Max
	Time-varying tax effort	1137	0.763	0.104	0.232	0.935
Direct	Persistent tax effort	1137	0.619	0.155	0.066	0.863
	Total tax effort	1137	0.474	0.137	0.033	0.758
	Time-varying tax effort	1062	0.699	0.115	0.089	0.917
CIT	Persistent tax effort	1062	0.419	0.214	0.042	1.000
	Total tax effort	1062	0.294	0.160	0.018	0.823
	Time-varying tax effort	1057	0.647	0.148	0.030	0.940
PIT	Persistent tax effort	1057	0.554	0.172	0.045	0.829
	Total tax effort	1057	0.360	0.138	0.006	0.655

Source: Authors' calculations

Appendix 2.9. The three-stage Estimation Results: Baseline, Controlling for Financial Development and Official Development Assistance and Aid – Log-Log Specification

Dependent	variabl	le: NRTax	ratio	•							-	
								NRTA	Χ			
					(1)	l		(2)			(3)
GDP per cap	ita (log)(-1)		0.32	9***	(0.0350)	0.28	0.287*** (0.0) 0.3	358***	(0.0370)
Total trade (% GDP)	(-1)		0.27	0.279***		0.28	0.282*** (0.0		0.2	296***	(0.0301)
Agriculture v	alue ac	lded (%GD	P) ₍₋₁₎	0.06	8**	(0.0339)	0.09	8***	0.0335).0	098***	(0.0349)
Total natural	Total natural resource rent (% GDP) ₍₋₁₎			-0.0	06	(0.0148)	-0.00	00	0.0151).0	004	(0.0149)
Financial dev	Financial development (-1)						0.20	4***	0.0292	.)		
ODA and Aid	ODA and Aid (% GDP) ₍₋₁₎									-0	.001	(0.0112)
Constant				-1.2	22***	(0.3231)	-0.58		0.3404	.) -1	.600***	(0.3393)
Observations	S			115			1126				25	
R-squared				0.22	.9		0.26	1			238	
Number of c			f 4l T	39	T	l (f ::.	39		F., 4: .	39)	
Panel A: Sta	ige 2 -	Estimation	or the i	ime-vary	ing rax	Inetticle	ncy (Sto	cnastic	Frontie		(0)	(2)
								_		(1)	(2)	(3)
								per of ob		1155	1126	1125
			(1)	(2)	(3)	_		chi2(1)		26.97	254.58	224.92
Log likelihod	od		141.42	169.20	149.50)		> chi2	0	.0000	0.0000	0.0000
<u> </u>	`	0.10	•	(1)		0.404555	(2)	101	0.10	0.6.4.4.4.	(3)	100
frontier (one)2***	(0.0127	•	0.194***	-)121)		96***	(0.0)	,
usigmas (_cc			28***	(0.1254	-	-2.812***	-	184)		52***	(0.12	-
vsigma (_cor			80***	(0.0943	0.0943) -3.794*** (0.0981) -3.6974*** istent Tax Inefficiency (Stochastic Frontier)					(0.09	940)	
Panel B: Sta	ige 3 -	Estimation	of the P	ersistent	Tax Ine	tticiency	(Stocha	stic Froi				
									(1)		(2)	(3)
							per of ob	os.	1155		1126	1125
		(1)	(2)	(3	-		chi2(1)		1511.4		382.52	1515.57
Log likelihod	od	-452.54	-385.7			Prob	> chi2		0.0000	0	0.0000	0.0000
				(1	,		-	2)			(3)	
frontier (one	-			478***	(0.012	•	447***	(0.012	,	0.488**	,	125)
usigmas (_cc				.125***	(0.058	-	240***	(0.059	-	1.056*		580)
vsigma (_cor				.661***	(0.109	92) -3.	710***	(0.108	9) -	3.638*	** (0.1	098)
Panel C: Sur				ation Re								
		ffort Com	•		Obs.		1ean	Std. I		Min	Ma	
(4)		-varying ta			1155		.834	0.078		0.379	0.9	
(1)		stent tax ef	tort		1155		.683	0.175		0.090	0.9	
		tax effort			1155		.571	0.158		0.056	0.8	
		-varying ta			1126		.833	0.082		0.365	0.9	
(2)		stent tax ef	fort		1126	0	.696	0.169		0.113	0.9	41
		tax effort			1126	0	.581	0.154		0.070	0.8	66
		-varying ta			1125	0	.836	0.078		0.382	0.9	63
(3)	Persi	stent tax ef	fort		1125	0	.676	0.179		0.085	0.9	39
	Total	tax effort			1125	0	.566	0.161		0.054	0.8	66

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 2.10. Replication results of Gupta (2007) – Common Correlation Coefficients (Verification)

Dependent variable: Tax ratio								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
GDP per capita (log)	3.624***	3.874***	3.080***	3.360***				
	(0.398)	(0.363)	(0.401)	(1.103)				
Agriculture (% GDP)					-0.208***	-0.181***	-0.125***	-0.243***
					(0.0362)	(0.0382)	(0.0352)	(0.0754)
Import (% GDP)		0.0330	0.112***	0.0484*		0.0338**	0.0821***	0.0741**
		(0.0213)	(0.0207)	(0.0260)		(0.0158)	(0.0212)	(0.0310)
Aid (% GDP)			-0.00778	0.0371			-0.00711	0.0419
			(0.0252)	(0.0645)			(0.0442)	(0.0771)
Debt (% GDP)			0.00512	0.0308*			-0.0111**	0.00927
			(0.00332)	(0.0164)			(0.00485)	(0.0153)
Government stability				0.231				0.297*
				(0.173)				(0.170)
Corruption				-0.305				-0.433
				(0.553)				(0.539)
Law and Order				0.348				0.476
				(0.352)				(0.321)
Tax on Goods and Services				0.337**				0.0674
				(0.169)				(0.181)
Tax on Income				0.521***				0.441**
				(0.171)				(0.179)
Tax on Trade				1.151***				0.852***
				(0.199)				(0.191)
Constant	-8.578***	-12.16***	-9.976***	-21.63*	25.51***	23.50***	20.82***	12.97***
	(3.270)	(2.907)	(3.014)	(11.09)	(0.678)	(0.843)	(1.039)	(2.104)
Observations	954	926	595	120	1,046	1,022	677	118
R-squared	0.419	0.443	0.534	0.662	0.312	0.311	0.364	0.614
Number of countries	93	89	62	20	85	83	59	19

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 2.11. Replication results of Gupta (2007) – Panel Specific Correlation Coefficients (Verification)

Dependent variable: Tax ratio								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
GDP per capita (log)	3.668***	4.304***	3.259***	3.543***				
	(0.365)	(0.354)	(0.395)	(1.216)				
Agriculture (% GDP)					-0.215***	-0.188***	-0.174***	-0.299***
					(0.0301)	(0.0343)	(0.0313)	(0.0686)
Import (% GDP)		0.0306	0.128***	0.0268		0.0153	0.0624**	0.0436
		(0.0220)	(0.0209)	(0.0230)		(0.0163)	(0.0297)	(0.0267)
Aid (% GDP)			-0.0169	0.0338			-0.00306	0.0792
			(0.0244)	(0.0626)			(0.0500)	(0.0669)
Debt (% GDP)			0.00674*	0.0404***			-0.00510	0.0121
			(0.00352)	(0.0151)			(0.00578)	(0.0156)
Government stability				0.275				0.348**
				(0.181)				(0.159)
Corruption				-0.297				-0.353
				(0.463)				(0.384)
Law and Order				0.173				0.403
				(0.328)				(0.350)
Tax on Goods and Services				0.577***				0.309*
				(0.143)				(0.168)
Tax on Income				0.571***				0.309*
				(0.166)				(0.166)
Tax on Trade				1.135***				0.690***
				(0.217)				(0.186)
Constant	-8.602***	-15.32***	-12.04***	-24.46**	26.21***	25.12***	23.07***	14.33***
	(2.993)	(2.636)	(2.829)	(11.11)	(0.660)	(0.860)	(1.340)	(2.159)
Observations	954	926	595	120	1,046	1,022	677	118
R-squared	0.678	0.685	0.773	0.801	0.606	0.594	0.602	0.860
Number of countries	93	89	62	20	85	83	59	19

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 2.12. Replication results of Gupta (2007) – Common Correlation Coefficients (Robustness)

Dependent variable: Tax ratio								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
GDP per capita (log)	2.330***	2.409***	1.993***	0.0881*				
	(0.207)	(0.206)	(0.197)	(0.0485)				
Agriculture (% GDP)					-0.169***	-0.162***	-0.103***	-0.00172
					(0.0117)	(0.0120)	(0.0122)	(0.00275)
Import (% GDP)		0.0166***	0.0537***	0.00266**		0.0280***	0.0555***	0.00315**
		(0.00453)	(0.00691)	(0.00122)		(0.00430)	(0.00670)	(0.00132)
Aid (% GDP)			-0.0206**	-0.00231			-0.0218**	-0.00264
			(0.00829)	(0.00159)			(0.00973)	(0.00179)
Debt (% GDP)			-0.00464***	6.78e-05			-0.00450**	1.76e-05
			(0.00143)	(0.000302)			(0.00194)	(0.000411)
Government stability				0.00737				0.00693
				(0.0124)				(0.0116)
Corruption				-0.0110				-0.0248
				(0.0348)				(0.0344)
Law and Order				-0.0305				-0.0313
				(0.0356)				(0.0331)
Tax on Goods and Services				1.045***				1.039***
				(0.0156)				(0.0159)
Tax on Income				0.969***				0.983***
				(0.0175)				(0.0166)
Tax on Trade				1.015***				1.015***
				(0.0174)				(0.0169)
Constant	-3.919**	-5.465***	-3.817**	-0.226	19.15***	17.67***	14.32***	0.515***
	(1.735)	(1.710)	(1.576)	(0.338)	(0.374)	(0.405)	(0.431)	(0.189)
Observations	3,874	3,729	2,317	1,256	4,195	4,073	2,552	1,321
R-squared	0.321	0.337	0.348	0.953	0.307	0.324	0.341	0.956
Number of countries	187	183	116	73	181	177	112	71

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 2.13. Replication results of Gupta (2007) – Panel Specific Correlation Coefficients (Robustness)

Dependent variable: Tax ratio								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
GDP per capita (log)	2.027***	2.097***	1.984***	0.00538				
	(0.169)	(0.159)	(0.197)	(0.0509)				
Agriculture (% GDP)					-0.154***	-0.145***	-0.106***	-0.00234
					(0.0117)	(0.0126)	(0.0130)	(0.00262)
Import (% GDP)		0.0202***	0.0612***	0.00529***		0.0326***	0.0622***	0.00510***
		(0.00423)	(0.00712)	(0.00116)		(0.00486)	(0.00730)	(0.00128)
Aid (% GDP)			-0.0198**	-0.00344**			-0.0237**	-0.00340*
			(0.00912)	(0.00168)			(0.0103)	(0.00190)
Debt (% GDP)			-0.00383***	-0.000193			-0.00518***	-8.41e-07
			(0.00133)	(0.000346)			(0.00191)	(0.000430)
Government stability				0.00524				0.00243
				(0.0110)				(0.0102)
Corruption				-0.0272				-0.0332
				(0.0328)				(0.0322)
Law and Order				-0.0471				-0.0378
				(0.0354)				(0.0332)
Tax on Goods and Services				1.056***				1.042***
				(0.0132)				(0.0146)
Tax on Income				0.985***				0.999***
				(0.0186)				(0.0176)
Tax on Trade				1.009***				1.020***
				(0.0197)				(0.0182)
Constant	-1.206	-2.878**	-3.451**	0.352	18.69***	16.87***	14.40***	0.431***
	(1.382)	(1.289)	(1.504)	(0.373)	(0.352)	(0.447)	(0.488)	(0.154)
Observations	3,874	3,729	2,317	1,256	4,195	4,073	2,552	1,321
R-squared	0.613	0.620	0.633	0.984	0.559	0.541	0.555	0.984
Number of countries	187	183	116	73	181	177	112	71

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets

Appendix 2.14. Parameter of the SF tax function for Non-resource dependent countries

	Veri	fication		Robus	tness	
	BC-HN	BC-TN	BC-HN	BC-TN	BC-HN	BC-TN
GDP per capita (log)	0.523**	0.534***	-7.745*	10.66**	5.883***	2.494***
	(0.203)	(0.206)	(4.680)	(5.161)	(0.450)	(0.490)
Agriculture (% GDP)	-0.005***	-0.005***	-0.03	-0.03	0.017	-0.057
	(0.002)	(0.002)	(0.04)	(0.04)	(0.036)	(0.038)
PEE (% GDP)	0.031***	0.031***	1.268***	0.809***	1.184***	0.888***
	(0.006)	(0.006)	(0.136)	(0.142)	(0.134)	(0.134)
Trade (% GDP)	0.0006**	0.0006**	0.04***	0.005	0.037***	0.008
	(0.0002)	(0.0002)	(0.007)	(0.007)	(0.007)	(0.006)
GINI index	-0.008***	-0.008***	-0.140***	-0.125***	-0.159***	-0.128***
	(0.001)	(0.001)	(0.025)	(0.028)	(0.026)	(0.028)
GDP_pc (log)_Squared	-0.022**	-0.023**	0.772***	-0.463		
	(0.011)	(0.011)	(0.264)	(0.290)		
Constant	0.966	0.925	32.35	-16.60	-24.63***	23.90
	(0.961)	(0.968)	(20.23)	(23.33)	(5.035)	(0)
Sigma	-1.880***	-2.066***	4.273***	2.983***	4.575***	2.868***
_	(0.185)	(0.455)	(0.220)	(0.180)	(0.205)	(0.151)
Gamma	3.558***	3.367***	3.196***	1.840***	3.514***	1.678***
	(0.204)	(0.475)	(0.243)	(0.226)	(0.224)	(0.192)
Mu	(omitted)	0.0892	(omitted)	20.25***	(omitted)	25.09***
		(0.184)		(5.366)		(5.152)
Eta	-0.004*	-0.004**	-0.024***	-0.002	-0.019***	-0.002
	(0.002)	(0.002)	(0.003)	(0.001)	(0.002)	(0.0008)
Observations	533	533	561	561	561	561
Number of countries	68	68	70	70	70	70
sigma2	0.153	0.127	71.73	19.75	97.01	17.60
gamma	0.972	0.967	0.961	0.863	0.971	0.843
sigma_u	0.385	0.350	8.301	4.129	9.706	3.851
sigma_v	0.065	0.065	1.679	1.645	1.675	1.664

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: HN: Half Normal, BC: Battese and Coelli, TN: Truncated Normal, PEE: Public Expenditure in Education

Appendix 2.15. Parameter of the SF Tax Function for Non-resource Dependent and Resources Dependent Countries

	Veri	fication -		Robus	tness	
	BC-HN	BC-TN	BC-HN	BC-TN	BC-HN	BC-TN
GDP per capita (log)	0.599***	0.615***	-9.203*	7.646	5.454***	2.188***
-	(0.193)	(0.197)	(4.740)	(4.732)	(0.441)	(0.493)
Agriculture (% GDP)	-0.005***	-0.005***	-0.071**	-0.0758**	-0.029	-0.093***
	(0.002)	(0.002)	(0.034)	(0.036)	(0.032)	(0.033)
PEE (% GDP)	0.035***	0.034***	1.310***	0.838***	1.215***	0.857***
	(0.006)	(0.006)	(0.137)	(0.132)	(0.134)	(0.130)
Trade (% GDP)	0.0007***	0.0007***	0.028***	0.002	0.023***	0.002
	(0.0002)	(0.0003)	(0.007)	(0.006)	(0.007)	(0.006)
GINI index	-0.008***	-0.008***	-0.130***	-0.096***	-0.144***	-0.097***
	(0.001)	(0.001)	(0.024)	(0.026)	(0.026)	(0.026)
GDP_pc (log)_Squared	-0.026***	-0.027***	0.829***	-0.306		
	(0.010)	(0.011)	(0.267)	(0.266)		
Constant	0.592	0.536	41.10**	-3.334	-20.41***	20.64***
	(0.909)	(0.923)	(20.47)	(20.87)	(4.878)	(6.686)
Sigma	-1.888***	-2.171***	4.332***	3.161***	4.647***	3.127***
	(0.181)	(0.417)	(0.205)	(0.146)	(0.187)	(0.136)
Gamma	3.487***	3.196***	2.938***	1.723***	3.279***	1.677***
	(0.200)	(0.437)	(0.232)	(0.188)	(0.209)	(0.174)
Mu	(omitted)	0.132	(omitted)	20.66***	(omitted)	20.52***
		(0.158)		(2.212)		(3.569)
Eta	-0.003	-0.003	-0.018***	-0.0007	-0.014***	-0009
	(0.002)	(0.002)	(0.003)	(0.001)	(0.002)	(0.001)
Observations	566	566	681	681	681	681
Number of countries	73	73	95	95	95	95
sigma2	0.151	0.114	76.13	23.59	104.3	22.82
gamma	0.970	0.961	0.950	0.849	0.964	0.842
sigma_u	0.383	0.331	8.503	4.474	10.03	4.384
sigma_v	0.067	0.067	1.957	1.890	1.946	1.896

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: HN: Half Normal, BC: Battese and Coelli, TN: Truncated Normal, PEE: Public Expenditure in Education

Chapter 3. Fiscal Resilience Building: Insights from a New Tax Revenue Diversification Index*

^{*}A version of this chapter, co-authored with R. Ouedraogo, N. Mousse Sow, and R. Tapsoba, was published in IMF Working Paper Series and is currently under review in *Journal of Public Economics*.

3.1. Introduction

Securing stable domestic resources is part of the multiple objectives of tax policy. Strengthening resilience to fiscal risks arising from government revenue volatility is critical for ensuring a sustainable delivery of public services throughout different phases of the business cycle. A large body of the literature shows that government revenue volatility weighs on economic growth and welfare, including through its adverse effects on the stability of public spending (Bleaney et al., 1995; Furceri, 2007; and Loayza et al., 2007). Delinking public spending from revenue volatility, through the implementation of rules-based fiscal frameworks, is referred to as a credible option for indirectly strengthening resilience to government revenue volatility (IMF, 2009; and Budina et al., 2012). Although not analytically grounded, a long-held intuitive view suggests that tax revenue diversification, that is the reliance on more diversified sources for levying revenue, can serve as an alternative for tackling more directly the root causes of government revenue volatility. The basic tenet is that given the responsiveness to the business cycle fluctuations varies across taxes, relying on a more diversified portfolio of tax streams makes the government's overall tax revenue less subject to as large volatility as compared to relying on a concentrated portfolio of taxes sources.

But is this long-held intuitive view borne out by the data? A few existing studies find evidence supportive of the view that greater tax diversification is conducive to lower revenue shortfalls during recessions (Suyderhound, 1994; and Carroll, 2005) and lower tax revenue volatility (Schunk and Porka, 2005). But other studies found limited evidence supportive of this view in the US during the recent Great Recession (Kilby, 2014). That said, all these few existing studies relied on Herfindahl-Hirschman (HHI)-based revenue diversification indices computed at the state level for the US. Other studies captured tax diversification indirectly, including through the share of tax revenue coming from the extractive sector (see *e.g.*, IMF, 2016).

This chapter refreshes the literature by proposing a new cross-country tax revenue diversification index (RDI). To the best of our knowledge, this is the first study to construct a homogenous cross-country dataset directly capturing the diversification of tax sources structure. Our proposed RDI is computed at the national level, covering a broad panel of 127

countries over 2000-2015, based on data availability. We focus on tax revenue, leaving non-tax revenues aside, as non-tax revenues are not primarily designed for revenue-enhancing purposes, but rather to get consumers' incentives right. The construction of the RDI rests on six major categories of taxes, as reported in the GFSM 2014, namely corporate income tax (CIT), personal income tax (PIT), property tax, tax on goods and services, tax on international trade, and other taxes. Another novelty of the paper is that our RDI builds on the Theil index (as opposed to the HHI), which offers more interesting properties, notably in terms of stability and robustness to outliers. Finally, this paper sheds light not only on the stability-enhancing role of tax revenue diversification but also on the RDI drivers.

Key stylized facts stand out on the RDI dynamics. On average, AEs relied on more a diversified structure of tax sources than EMEs and LIDCs, by as high as the double in terms of RDI over the period 2000-2015. Resources-rich countries and fragile states exhibit the most concentrated structure of tax sources, reflecting their over-dependence on commodity revenues and weak tax administration capacity, respectively. Regional disparities in the RDI are also noticeable, with North American and EU countries exhibiting the most diversified taxation sources, while GCC, South Asian, Latin American, and Sub-Saharan African countries present the least diversified revenue streams.

We also uncover the following results from our econometric analyses. First, the RDI exhibits high persistency over time, with up to 60-74 percent of the current level of RDI predicted by its lagged value. Second, our empirical investigations suggest that tax revenue diversification is not just a reflection of economic diversification, but also the outcome of macroeconomic, political and institutional factors. A non-monotone relationship is also at play between the RDI and economic development, with countries' portfolio of tax sources getting more diversified as their institutions and tax administration capacity keep improving, until a tipping point, where richer countries start finding it more difficult to diversify further their sources of tax revenue. Third, and not the least, our findings lend support to the long-held view that tax revenue diversification matters a great deal for mitigating government revenue volatility. And it does not stop there: tax revenue diversification also improves tax revenue collection.

The remainder of the chapter is structured as follows. Section 2 introduces the data, while section 3 lays out the detailed steps of the construction of the RDI, and highlights key patterns standing out from the RDI, along with a few pair-wise correlations. Section 4 explores the drivers of the RDI, while section 5 assesses its effects on both volatility and level of government revenue. Section 6 presents some concluding remarks.

3.2. Data

3.2.1. The GFS database

Our sample covers 127 countries from all regions and across all income groups, based on data availability over the period 2000-15. It is made up of 47 advanced economies (AEs), 31 Emerging Market Economies (EMEs), and 49 low-income developing countries (LIDCs). 25 are from Sub-Saharan Africa (SSA), two from North America (NA), 7 from South Asia (SA), 19 from Latin America & the Caribbean (LAC), 14 from the Middle East & North Africa (MENA) of which 5 from the Gulf Cooperation Council (GCC), 21 from East Asia & Pacific (EAP), and 39 from Europe & Central Asia (ECA) (See Appendix 3.1).

We rely on the IMF's Government Financial Statistics (GFS) dataset to extract tax revenue data. The GFS dataset provides detailed public finance data in line with international standards (GFSM 2014), thus allowing for comparability across countries and over time (Aldasoro and Seiferling, 2014). The GFSM 2014 represents the latest internationally accepted methodology for compiling government finance statistics in a systematic manner, with well-established definitions and classifications.

The GFS presents additional appealing features. First, data from the GFS are actual, not estimates or projections as in the IMF's WEO. Second, unlike alternative databases (WEO, ICTD), the GFS provides the most detailed classification of government's tax revenues for a large coverage across countries and over time. Third, the GFS is compiled by the IMF's Statistics

Department, which ensures consistency across countries, the quality and the accuracy of data under a common methodology for all countries.⁴⁷

3.2.2 Tax revenue components

The GFS provides the most comprehensive and detailed cross-country data in a uniform format. Table 3.1 below provides an overview of tax revenue classification along the GFSM 2014 format.⁴⁸

Given data limitations, notably for LIDCs, we restrict data disaggregation to a level that ensures a reasonably large but homogenous sample. We focus on tier-3 of tax revenue disaggregation, which encompasses taxes on income, profits and capital gains, payroll and workforce, on property, goods and services, international trade and transactions, and other taxes. We exclude social contributions and grants, as they do not meet the definition of a tax. ⁴⁹ Taxes are expressed in percent of GDP and are regrouped in two blocks: (i) direct taxes, which include taxes on income, profits, property, and on capital gains for both individuals and corporations, and (ii) indirect taxes, consisting of taxes on goods and services, taxes on international trade and transactions, and other taxes.⁵⁰

0. ..

⁴⁷ Despite these differences across databanks, their associated data are highly correlated: the correlation coefficient of total tax revenue between the GFS and the WEO is 0.92, and 0.93 between the GFS and the ICTD.

⁴⁸ GFSM 2014, pp. 88.

⁴⁹ Social contributions are actual or imputed revenue receivable by social insurance schemes to make provision for social insurance benefits payable, while grants are transfers receivable by government units, from other resident or nonresident government units or international organizations (GFSM, 2014).

⁵⁰ Full definition of each category of tax can be found in the Government Finance Statistics Manual (2014).

Table 3.1. Classification of Tax Revenues

	Table 5111 Classification of Tax Revenues
11	Taxes
111	Taxes on income, profits, and capital gains
1111	Payable by individuals
1112	Payable by corporations and other enterprises
1113	Other taxes on income, profits, and capital gains
112	Taxes on payroll and workforce
113	Taxes on property
1131	Recurrent taxes on immovable property
1132	Recurrent taxes on net wealth
1133	Estate, inheritance, and gift taxes
1135	Capital levies
1136	Other recurrent taxes on property
114	Taxes on goods and services
1141	General taxes on goods and services
11411	Value-added taxes
11412	Sales taxes
11413	Turnover and other general taxes on goods and services
11414	Taxes on financial and capital transactions
1142	Excise
1143	Profits of fiscal monopolies
1144	Taxes on specific services
1145	Taxes on use of goods and on permission to use goods or perform activities
11451	Motor vehicle taxes
11452	Other taxes on use of goods and on permission to use goods or perform activities
1146	Other taxes on goods and services
115	Taxes on international trade and transactions
1151	Customs and other import duties
1152	Taxes on exports
1153	Profits of export or import monopolies
1154	Exchange profits
1155	Exchange taxes
1156	Other taxes on international trade and transactions
116	Other taxes
1161	Payable solely by business
1162	Payable by other than business or unidentifiable

Source: GFSM 2014

3.2.3. Dealing with Missing Data

We fill missing observations in the GFS using available data from the IMF's Worldwide Revenue Database. We take great care at ensuring consistency between these data and our baseline dataset (GFS). To this end, we first check whether the historical data available in both databases match. Then, we make sure that filling the missing data does not lead to inconsistencies in the resulting database. Particularly, we refrain from filling a gap when this is likely to result in a substantial discrepancy between the total tax figure and the sum of the sub-components. Appendix 3.3 provides an overview of the missing observations that were filled with data from the IMF's Worldwide Revenue Database.

3.2.4. Composition of tax revenues

Figure 3.1 below provides a snapshot of the different tax categories, along with their relative share during 2000-2015 (full sample average values). Indirect taxes (notably taxes on goods and services) stand as the largest tax component, accounting for about 60 percent of total taxes, against 40 percent for direct taxes. This pattern reflects the growing reliance on tax on goods and services over the past two decades (160 countries are currently using some forms of VAT), most likely owing to its relative ease of administration and its economic neutrality. ⁵¹

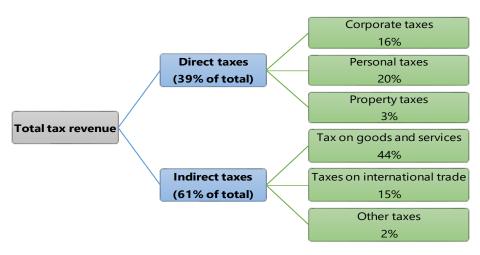


Figure 3.1. Composition of Tax Revenues, 2000-15

Source: GFS, and authors' calculations

Table 3.2 provides more detailed trends on tax revenue and its associated components. Not surprisingly, on average, tax revenue is higher in AEs (25 percent of GDP), more than twice the level in developing countries. Non-resource-rich countries and non-fragile states mobilize larger tax revenue (20.2 and 19.7 percent of GDP, respectively) compared to their resource-rich and fragile peers (11.6 and 14.8 percent of GDP, respectively). Surprisingly, small states mobilize greater tax revenue than their non-small peers (20.4 and 18.8 percent, respectively). This could be explained by a "size effect", in that smaller states tend to be easier to administer, from a tax collection and administration standpoint.

⁵¹ The VAT was first introduced in France in 1954.

⁵² The low level of tax revenue in non-OECD high-income countries owes much to the fact these are mostly oil-exporting countries.

Table 3.2. Descriptive Statistics of Tax Revenues (Percent of GDP)

	Total taxes	Corporate tax	Personal tax	Property tax	Tax on goods & services	Tax on international trade	Other taxes
Full sample	19.0	2.9	4.3	0.5	8.5	2.5	0.3
By income level							
High income: OECD	25.8	3.1	9.3	1.3	11.6	0.1	0.3
High income: non-OECD	15.6	2.5	2.5	0.4	7.3	2.3	0.4
Upper middle income	19.4	3.7	2.5	0.3	8.7	3.7	0.3
Lower middle income	16.8	2.9	2.3	0.2	7.2	3.4	0.4
Low income	11.2	1.6	1.4	0.0	5.5	2.5	0.2
By region							
EU	25.3	2.7	9.0	1.0	12.3	0.1	0.3
Non-EU and CA	21.0	2.7	4.8	0.5	10.2	2.3	0.2
NA	19.1	2.7	3.2	10.8	2.1	0.2	0.0
EAP	19.2	2.8	4.4	0.8	8.6	1.5	0.4
LAC	16.9	2.4	1.9	0.4	7.5	4.1	0.3
MENA: Non-GCC	18.9	4.7	2.8	0.3	8.5	1.6	0.8
MENA: GCC	5.8	2.9	0.2	0.0	1.8	0.9	0.0
SA	10.6	2.2	0.8	0.0	4.7	2.7	0.2
SSA	18.2	3.6	2.4	0.1	6.1	5.8	0.3
By size							
Small states	20.4	3.0	3.5	0.3	7.3	6.1	0.3
Non-small states	18.8	2.9	4.5	0.6	8.9	1.3	0.3
Fragility status							
Fragile states	11.6	1.8	1.9	0.3	4.4	3.2	0.6
Non-fragile states	19.7	3.0	4.4	0.5	8.8	2.4	0.3
Natural resource endowment							
Resource rich countries	14.9	5.2	1.8	0.2	5.4	1.6	0.5
Non-resource rich countries	20.2	2.6	4.8	0.6	9.2	2.5	0.3

Source: GFS, and authors' calculations

3.3. Construction of the RDI

3.3.1. Methodological Approach

Our RDI is based on the Theil index approach. The Theil's entropy index (Theil, 1972) is preferred to the HHI (Hirschman, 1964), as it features more appealing properties, notably in terms of stability and robustness to outliers. The Theil index has been proven to be more stable regardless of the level of disaggregation, given it incorporates the *within* and *between* components, and is more adapted to grouped data (World Bank, 2014). For instance, in exports diversification analysis, the Theil index can be computed along export lines and split up additively into between-groups and within-groups components (Cadot *et al.*, 2011). In addition, for income distribution analysis, the Theil index allows decomposing inequality into the part that is due to inequality within areas (*e.g.*, urban, rural) and the part that is due to differences

between areas (*e.g.*, the rural-urban income gap). The main drawback of the HHI relates to its instability and sensitivity to the level of disaggregation, as it assigns greater weight to the larger categories. Furthermore, the HHI underestimates the values of small categories, as it uses the square terms, which can be quite problematic for analyzing tax revenue patterns, as any percentage point of additional revenue can make a significant difference in thousands of people's lives.⁵³ These appealing properties of the Theil index go a long way to explaining its growing popularity in recent studies, including on exports diversification (*e.g.*, Cadot *et al.*, 2011; Papageorgiou and Spatafora, 2012).

We use the Theil index formula to calculate the RDI, as follows:

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{Tax_i}{\mu} \times log\left(\frac{Tax_i}{\mu}\right)$$
 (3.1)

T refers to the Theil index; Tax_i to a specific direct or indirect tax subcomponent (corporate income tax, personal income tax, or taxes on goods and services), and $\mu = \frac{1}{n} \sum_{i=1}^n tax_i$ is the average of the tax subcomponent into consideration. T is a measure of concentration, with a higher value of T referring to a more concentrated structure of tax sources, or a lower diversification of tax revenue. Given the construction of the RDI rests on six categories of taxes, the resulting Theil index will vary between 0 (perfect diversification) and 1.8 (reliance on one type of tax only). 54

3.3.2. Results

3.3.2.1. Stylized Facts

We highlight key patterns standing out of the RDI. As discussed above, the higher the RDI, the stronger the concentration structure of tax sources. The full sample average RDI stands at 0.51 (Figure 3.2). Japan records the lowest RDI (0.05), while the Kingdom of Bahrain records the

⁵³ For robustness purposes, we compute an HHI-based RDI (see Appendix 3.6), which turns out highly correlated with the Theil-based (correlation coefficient of 0.98). For a comprehensive review of possible approaches for computing concentration indexes, see Roberts (2014).

⁵⁴ The maximum value of the Theil index is ln(n), with n referring to the number of considered tax categories.

highest RDI (1.39), thus standing as the country with the most and least diversified structure of tax sources, respectively.

Table 3.3 provides an RDI-based country ranking over the period 2000-2015. The top 5 countries with the most diversified structure of tax sources belong to the AEs and EMEs, while the bottom 5 countries are either commodity-dependent or fragile/small countries. Over the most recent period (2010-2015), Japan emerges as the top performer in terms of tax revenue diversification (RDI of 0.06), followed by France and the United Kingdom (RDI of 0.15 and 0.17, respectively). Bolivia, Kuwait, and Anguilla display the least diversified structure of tax sources (RDI of 1.34, 1.34 and 1.32, respectively). These least diversified economies tend to rely mostly on taxes on goods and services, and international trade.

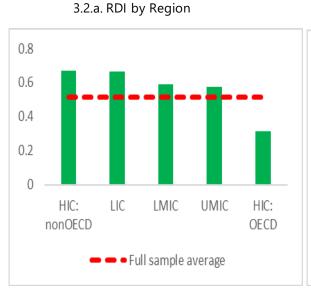
Table 3.3. An excerpt of RDI-based Country Ranking⁵⁵

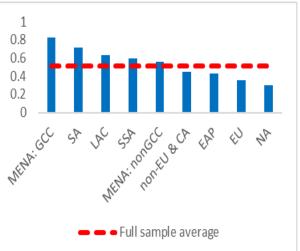
	2000-2004		•	2005-2009	•	•	2010-2015	
Rank	Country	RDI	Rank	Country	RDI	Rank	Country	RDI
1	Japan	0.053	1	Japan	0.055	1	Japan	0.057
2	France	0.160	2	United Kingdom	0.140	2	France	0.153
3	United Kingdom	0.167	3	France	0.149	3	United Kingdom	0.172
4	United States	0.188	4	United States	0.156	4	United States	0.176
5	South Africa	0.192	5	Switzerland	0.182	5	South Africa	0.178
95	Bolivia	1.040	113	Maldives	1.141	120	Bahrain, Kingdom of	1.169
96	Bahamas, The	1.203	114	Bahamas, The	1.162	121	United Arab Emirates	1.218
97	Maldives	1.213	115	Qatar	1.173	122	Anguilla	1.317
98	Qatar	1.215	116	Anguilla	1.350	213	Kuwait	1.336
99	Anguilla	1.340	117	Burkina Faso	1.350	124	Bolivia	1.336

Source: Authors' calculations.

3.3.2.2. Geographical Distribution of RDI

Significant differences emerge across regions (Figure 3.2.b). NA and EU exhibit the lowest RDI (below the full sample average), while the GCC, LAC and SSA record the highest RDI. This points to lower tax revenue diversification in these latter compared to the former groups.


The RDI also varies by income levels. Figure 3.2.a shows that OECD countries have the most diversified structure of tax sources, followed by middle-income countries. High-income non-OECD and low-income countries record the highest RDI, meaning that they have the most


⁵⁵ The full RDI-based country ranking can be found in Appendix 3.4.

concentrated structure of tax sources. Overall, tax revenue diversification appears positively correlated with countries' level of development, as confirmed by Figure 3.3, which shows that the concentration of tax revenue decreases as per capita GDP increases.

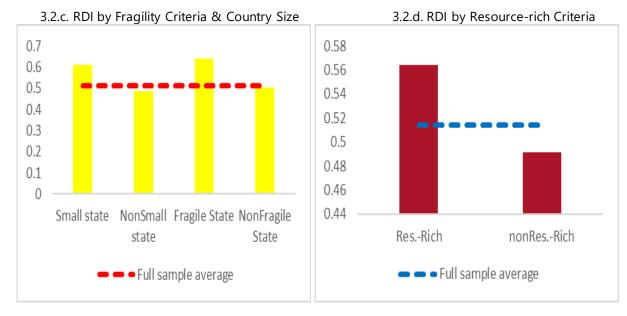

Fragile countries, small states, and resource-rich countries feature more concentrated structure of tax sources. This may stem from the fact that fragile countries face structural impediments, including conflicts, which makes it harder to effectively administer diverse tax revenue streams (Figure 3.2.c). Small States tend to specialize in a few economic activities, thus limiting their ability to diversify their sources of tax revenue (Figure 3.2.c). Small and fragile countries mostly rely on taxes on international trade as a major source of government revenue (see Table 3.2). Finally, resource-rich countries have RDI standing above the full sample average, and higher than their non-natural resource rich peers (Figure 3.2.d). This implies that resources-dependent countries have more concentrated portfolios of tax revenue streams, owing, among other factors, to weak incentives to diversify away from the resource bonanza. Tax revenue in these countries mostly comes from corporate income taxes from the resource exploitation.

Figure 3.2. RDI by Region, Income Group, Fragility Status and Size (Average Values)

3.2.b. RDI by Income Group

Source: Authors' calculations. Note: SA stands for South Asia, LAC for Latin America and Caribbean, SSA for sub-Saharan Africa, MENA for Middle East and North Africa, EU for European Union, NA for North America, CA for Central Asia; GCC for Golf Cooperation Council. HIC stands for high-income country, LIC for low-income country, LMIC for lower middle-income country, UMIC for upper middle-income country, and OECD for Organization for Economic Cooperation and Development.

Correlation = -0.43

End GDP bet capita

Log real GDP per capita

Fitted values

Correlation = -0.43

Log real GDP per capita

Fitted values

Figure 3.3. Correlation between Per Capita GDP and RDI

Source: WEO and authors' calculations

3.3.2.3. RDI Over Time

Figure 3.4 plots the evolution of the RDI between the initial (2000–2004) and final period (2010–2015). While some countries diversified their structure of tax sources over time, particularly AEs and some EMEs (Austria, Denmark, France, Germany, Japan, Morocco and South Africa), others displayed a more concentrated structure of tax sources in recent years (Kuwait, Bahrain and Sri Lanka). Another set of countries experienced mixed diversification patterns. While their RDI

remains below the sample average, it shrunk over time (Bhutan, Dominica, Estonia, Finland, Netherlands). Finally, some countries diversified their taxation sources (Algeria, Côte d'Ivoire, Ghana, Kenya, Mauritius and Uganda).

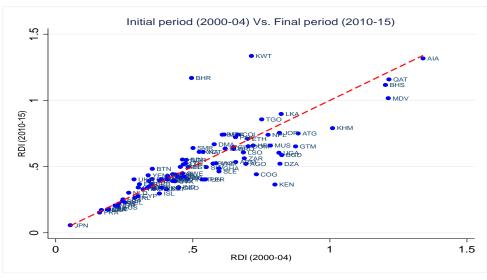


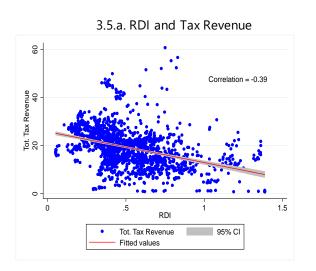
Figure 3.4. RDI Over Time

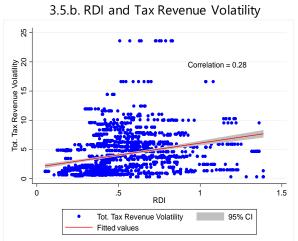
Source: GFS and authors' calculations

3.3.3. Putting the RDI in Perspective with Macroeconomic Developments

We provide preliminary correlations between the RDI and key macroeconomic variables, such as total tax revenue and its volatility, spending volatility, growth volatility, income inequality and exports concentration (Figure 3.5).⁵⁶ The following patterns stand out:

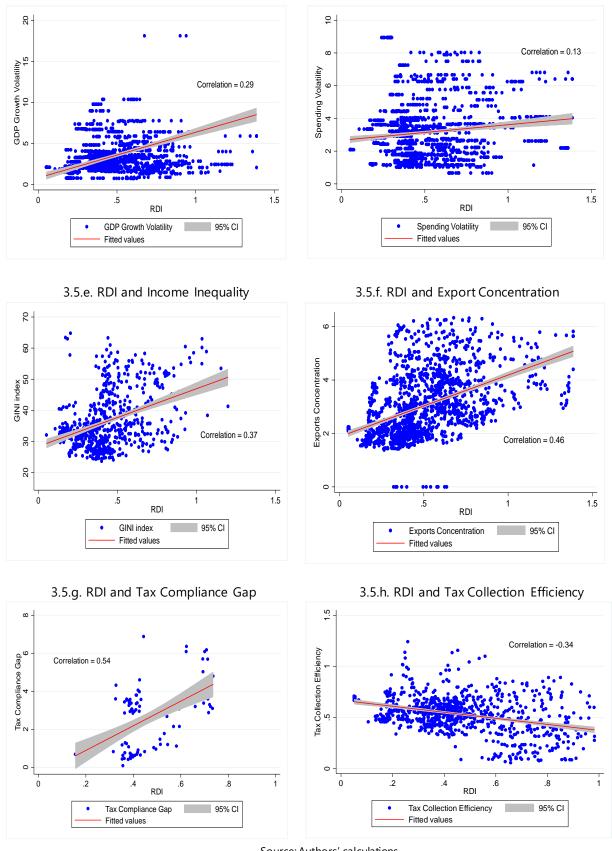
- Concentrated structure of tax sources is associated with both lower tax revenue (Figure 3.5.a) and greater volatility tax revenue, growth, and spending (Figure 3.5.b, 3.5.c, and 3.5.d, respectively). This seems in line with the intuitive view that a more diversified portfolio of tax revenue streams helps strengthen fiscal resilience to government revenue volatility.
- The RDI is correlated with export diversification (Figure 3.5.f), which also proxies for the level of economic diversification. This may stem from the fact that various taxes from


-


⁵⁶ Volatility is captured through the standard deviation of each variable.

export-related activities, including from the mining sector, accounts for a big chunk of government revenue in many countries, particularly in LIDCs (Table 3.2).

- Concentrated tax revenue is correlated with income inequality (Figure 3.5.e). A possible explanation is that the more concentrated the tax sources structure, the more likely its incidence gets unequally distributed within the population. This may also suggest that in countries with weak institutions, corrupt leaders may impose highly unequal redistribution of wealth, which in turn translates into more concentrated tax sources structure.
- Tax revenue concentration is negatively associated with tax collection efficiency (Figure 3.5.h) and taxpayer's compliance (Figure 6.g), suggesting that the diversification of tax sources and the capacity to administer tax compliance might be mutually-reinforcing.


Figure 3.5. Correlation between the RDI and Key Macroeconomic Variables, 2000-2015

3.5.c. RDI and GDP Growth Volatility

3.5.d. RDI and Spending Volatility

Source: Authors' calculations

3.4. Drivers of Tax Revenue Diversification: An Econometric Analysis

We turn now onto assessing the key drivers of cross-country variations in the RDI. We carry out panel regressions linking the RDI to potential explanatory variables, using the full sample over the period 2000-15. The following econometric specification is considered.

$$RDI_{it} = \alpha + \beta RDI_{i,t-1} + \gamma X_{i,t-1} + \lambda K_{i,t-1} + \sum_{k=1}^{K} \varphi_k Z_{k,i,t-1} + \eta_i + \varepsilon_{it}$$
 (3.2)

Revenue diversification index (RDI) is the dependent variable, and three sets of potential covariates are considered drawing on the existing related literature (*e.g.*, Murphy *et al.*, 1993; Acemoglu and Zilibotti, 1997; Agosin *et al.*, 2012; Ahmadov, 2012; Elhiraika *et al.*, 2014; Cuberes and Jerzmanowski, 2009; Malik and Temple, 2009; Klinger and Lederman, 2010; Starosta de Waldemar, 2010 among others): (i) factors capturing the country economic structure (X_{it}); (ii) variables reflecting the macroeconomic (domestic and external) environment ($K_{i,t}$); and (iii) factors featuring countries' political and institutional context along with their development status ($Z_{k,it}$).⁵⁷ We run dynamic panel regressions using system-GMM estimators, to better address likely endogeneity problems while accounting for the persistency in the RDI over time. All covariates are introduced with one-year lag, to account for likely delays in the influence of these variables on the RDI, and to mitigate likely reverse causality bias.

Table 3.4 reports the estimates of the RDI drivers, focusing first on the role of the structure of the economy and the macroeconomic environment. ⁵⁸ Before going any further, it is worth signaling that the RDI exhibits high persistency over time, as captured by the strongly significant coefficient associated with the lagged RDI variable. Up to 60-74 percent of the current level of tax diversification is predicted by its lagged value, suggesting a strong inertia in the RDI dynamics.

.

⁵⁷ Detailed definitions and sources of all variables can be found in Appendix 3.2.

⁵⁸ The regressions passed the standard diagnostic tests for the validity of instruments – the AR (2) test for the absence of second-order autocorrelation of the error term and Hansen's overidentification test.

Countries' level of development (proxied by per capita real GDP) has a significant non-linear impact on their ability to diversify their tax revenue sources. There is a significant inverted U-shaped relationship between per capita real GDP and the RDI. The coefficient associated with per capita real GDP is negative, while the coefficient associated withits squared term is positive. This suggests that countries' level of tax revenue diversification tends to increase as their economy develops. Insofar as they strengthen their institutional framework and improve tax administration capacity, until they reach a tipping point beyond which further diversification of tax revenue becomes harder. This somehow reflects the specialization on a few high skills-based economic activities that characterize some AE's growth model (e.g., shifting to an innovation-based growth model).

The structure of the economy matters for shaping a country's tax revenue diversification. First, a less diversified economy, proxied by the export concentration index, is conducive to a more concentrated structure of tax revenue. Columns 2-9 show that higher export concentration goes hand-in-hand with higher tax revenue concentration, as reflected by the positive and significant coefficient associated with the export concentration index. Second, there is also suggestive evidence of some form of "natural resources curse" being at play, as captured by the positive and statistically significant coefficient associated with natural resource rents (column 3). This suggests that countries with larger natural resource endowments face less incentives to diversify their structure of taxation sources. Indeed, most resource-rich countries tend to over-rely on the resource bonanza – the GCC countries for example introduced the VAT for the first time in 2018, amid the recent oil price shocks. Third, the coefficient associated with per capita official development assistance is positive and statistically significant (column 4). This suggests a stronger dependence to donor support weakens policymakers' incentives to diversify taxation sources, bringing to the data long-held views about moral hazard in domestic revenue mobilization in contexts of dependence to public aid, notably unconditional grants (Thornton, 2014). Fourth, a larger informal sector makes it harder to identify taxpayers and assess their compliance, thus rendering more arduous any steps to bring taxpayers into the tax net (column 5).

⁵⁹ The average per capita GDP threshold level is \$ 4222, corresponding broadly to the current levels recorded by countries such as Georgia, and Tunisia.

Table 3.4. Macroeconomic and Structural Drivers of RDI, 2000-2015

Dependent variable: Revenue dive	rsquattorrande	X (NDI)	Rac	seline estimat	os and additi	onal controls			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
RDI _(t-1)	0.679***	0.604***	0.599***	0.737***	0.683***	0.598***	0.608***	0.619***	0.610***
()	(0.061)	(0.019)	(0.018)	(0.030)	(0.029)	(0.015)	(0.019)	(0.018)	(0.011)
Log real GDP_pc _(t-1)	-0.460*	-0.395***	-0.450***	-0.274*	-0.539**	-0.533***	-0.336**	-0.308**	-0.786***
,	(0.255)	(0.144)	(0.143)	(0.165)	(0.249)	(0.133)	(0.137)	(0.148)	(0.080)
Log real GDP_pc_squared _(t-1)	0.025*	0.025***	0.028***	0.017	0.037**	0.034***	0.022**	0.021**	0.050***
	(0.014)	(0.009)	(0.009)	(0.011)	(0.016)	(800.0)	(0.009)	(0.009)	(0.005)
Financial development _(t-1)		-0.381***	-0.349**	0.079	-0.653**	-0.523***	-0.371***	-0.492***	-0.721***
		(0.139)	(0.149)	(0.166)	(0.273)	(0.143)	(0.135)	(0.158)	(0.115)
Trade openness _(t-1)		-0.026	-0.015	0.011	-0.033	-0.037	-0.022	-0.038	-0.049**
		(0.025)	(0.028)	(0.018)	(0.044)	(0.023)	(0.025)	(0.025)	(0.021)
Export concentration index _(t-1)		0.018**	0.013*	0.008	0.007	0.012	0.015*	0.023*	0.014*
		(0.009)	(0.008)	(0.005)	(0.023)	(0.009)	(800.0)	(0.013)	(800.0)
Natural resource rents _(t-1)			0.272**						
			(0.125)						
Log net ODA received_pc _(t-1)				0.011**					
				(0.005)					
Log of informal share _(t-1)					0.137*				
					(0.080)				
Log of inflation rate _(t-1)						0.010*			
						(0.005)			
De jure globalization index _(t-1)							-0.018		
							(0.061)	0.007	
Human capital index _(t-1)								-0.037	
INAT management de una mana								(0.036)	-0.017*
IMF program dummy									(0.009)
Constant	2.163*	1.734***	1.965***	1.106*	1.742*	2.335***	1.572**	1.441**	3.387***
Constant	(1.111)	(0.594)	(0.594)	(0.641)	(0.911)	(0.553)	(0.614)	(0.613)	(0.351)
Nb. of observations	1218	1141	1141	639	943	1061	1141	960	1125
Countries	104	97	97	65	83	95	97	79	94
AR(1)	0.06	0.09	0.09	0.00	0.08	0.10	0.09	0.09	0.09
AR(2) p-value	0.31	0.30	0.30	0.20	0.27	0.28	0.30	0.31	0.30
Hansen OID (<i>p-value</i>)	0.58	0.15	0.15	0.71	0.88	0.37	0.17	0.34	0.16
Nb. of instruments	29	58	59	53	48	61	59	59	72
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

^{*, ***,} and **** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: Our measure of revenue diversification (RDI) is considered endogenous, along with the GDP per capita, its squared term, and the financial development variables. These endogenous variables are instrumented using their own respective lags. We follow Roodman (2009) and collapse the number of instruments to avoid the overidentification problem. In all specifications, we reject the null of the AR (1) test of no autocorrelation in the error terms. Thus, lagged variables can be safely used as instruments. Hansen's p-value robust to heteroskedasticity and autocorrelation validates the over-identification restrictions. The remaining variables are considered exogenous.

Macroeconomic conditions play a role in countries' tax revenue diversification patterns. ⁶⁰ First, larger trade openness is positively correlated with greater tax revenue diversification. The coefficients associated with trade openness (columns 2-9) are negative, though statistically insignificant in most cases. Second, greater macroeconomic instability (proxied by inflation) is also found to be associated with lower tax diversification (column 6). This may point to the macroeconomic uncertainties brought about by greater instability, which ultimately results in

⁶⁰ The statistical significance of the coefficients associated with the degree of globalization and human capital (columns 7-8) is weak.

the instability of the tax revenue, and likely its shrinkage. Third, the coefficient associated with financial development is significantly negative (columns 2 to 9). This suggests that deeper financial systems may allow for greater formalization of the economy, which in turn makes it easier to broaden the portfolio of tax revenue streams (Medina *et al.*, 2017). Fourth, having an IMF-supported program may also help diversify the structure of tax sources. This may reflect countries' efforts to improve revenue collection performance under IMF-supported programs (column 9).

There are significant heterogeneities across income levels and regions (Table 3.5). Compared with AEs, LIDCs and EMEs have more room to diversify further their portfolio of tax revenue streams (column 2), insofar as they strengthen their institutional framework and improve their tax administration capacity (Gaspar *et al.*, 2016; and Akanbi and Akitoby, 2018). Column 1 confirms the regional disparities in RDI, with South Asia, Latin America, and the Middle East and North Africa displaying the least diversified structure of tax sources. Resource-rich countries also exhibit less diversified structure of tax revenue sources compared to other countries (column 3).

Table 3.5. Macroeconomic and Structural drivers of RDI, by Region and Income Level

	versification inde Baseline	Advanced vs EME/LIDC	Resource rich
	(1)	(2)	(3)
RDI ₍₋₁₎	0.611***	0.784***	0.597***
	(0.011)	(0.077)	(0.019)
RDI × Dummy ADV ₍₋₁₎		-0.172*	
, (· ,)		(0.096)	
Dummy ADV ₍₋₁₎		0.014	
		(0.091)	
Real GDP_pc ₍₋₁₎	-0.617***	-0.534	-0.407***
. tea. e.zpe(-i)	(0.080)	(0.342)	(0.146)
Real GDP_pc_squared ₍₋₁₎	0.038***	0.032	0.026***
rtear est _pe_squarea(-1)	(0.005)	(0.021)	(0.009)
Financial development ₍₋₁₎	-0.396***	0.003	-0.357**
Timanetai developitierit ₍₋₁₎	(0.108)	(0.238)	(0.149)
Trada anannass	-0.032*	-0.034	, ,
Trade openness ₍₋₁₎			-0.012
E an and a sure and and a sure from the state of	(0.019)	(0.042)	(0.027)
Export concentration index ₍₋₁₎	0.025***	0.043***	-0.004
Daniel FAD	(0.007)	(0.015)	(0.021)
Dummy_EAP	0.027		
Decree and LAC	(0.041)		
Dummy_LAC	0.081***		
Daniel MENIA	(0.031)		
Dummy_MENA	0.240***		
D	(0.047) 0.140***		
Dummy_SA			
Dummary SCA	(0.039) -0.002		
Dummy_SSA	(0.033)		
Resource rich dummy	(0.055)		0.095**
Resource nerr durining			(0.043)
Constant	2.631***	2.195	1.822***
Constant	(0.346)	(1.360)	(0.601)
Nb. of observations	1141	1141	1141
Countries	97	97	97
AR(1)	0.08	0.07	0.09
AR(2) p-value	0.30	0.31	0.29
Hansen OID (p-value)	0.07	0.71	0.17
Nb. of instruments	70	35	58
Year FE	Yes	Yes	Yes
Region FE	Yes	No	Yes

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: Same as in Table 3.4.

Table 3.6. Political and Institutional Drivers of RDI, 2000-2015

Dependent variable: Revenue diversific				Polit	ical and inst	tutional fact	ors			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
RDI ₍₋₁₎	0.610***	0.627***	0.605***	0.624***	0.598***	0.593***	0.597***	0.599***	0.580***	0.643***
()	(0.019)	(0.011)	(0.012)	(0.008)	(0.010)	(0.010)	(0.015)	(0.012)	(0.018)	(0.015)
Real GDP_pc ₍₋₁₎	-0.606***	-0.701***	-0.779***	-0.968***	-0.721***	-1.062***	-0.324*	-0.550***	-0.432**	-0.490**
-1 ()	(0.156)	(0.117)	(0.086)	(0.079)	(0.082)	(0.099)	(0.179)	(0.114)	(0.184)	(0.198)
Real GDP_pc_squared ₍₋₁₎	0.040***	0.044***	0.050***	0.062***	0.046***	0.071***	0.022*	0.036***	0.029**	0.034***
_, _ , , , ,	(0.010)	(0.007)	(0.006)	(0.005)	(0.005)	(0.006)	(0.011)	(0.007)	(0.012)	(0.012)
Financial development ₍₋₁₎	-0.729***	-0.521***	-0.668***	-0.687***	-0.614***	-0.719***	(0.195)	-0.363***	(0.183)	-0.504***
. (9	(0.156)	(0.132)	(0.136)	(0.088)	(0.120)	(0.093)	(0.126)	(0.100)	(0.129)	(0.152)
Trade openness ₍₋₁₎	-0.071**	0.010	-0.051*	-0.048**	-0.061**	(0.034)	0.009	(0.010)	(0.007)	(0.049)
(1)	(0.035)	(0.031)	(0.029)	(0.023)	(0.025)	(0.027)	(0.026)	(0.021)	(0.029)	(0.030)
Export concentration index ₍₋₁₎	0.003	0.010	0.015*	0.010	0.009	(0.005)	0.016*	0.017**	0.019**	0.008
	(0.011)	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)	(0.008)	(0.009)	(0.013)
Democracy ₍₋₁₎	-0.005*	()	()	(=====)	()	(5.555)	(3.222)	(0.000)	()	(5.5.5)
2666.469(-1)	(0.003)									
Political polarization ₍₋₁₎	(0.000)	-0.026**								
ontical polarization(-1)		(0.012)								
Government fractionalization ₍₋₁₎		(0.012)	-0.149***							
Sovernment nactionalization(-1)			(0.025)							
Political stability ₍₋₁₎			(0.023)	-0.003**						
Folitical stability (-1)				(0.001)						
Largest gov. party orient.(-1)				(0.001)	-0.011***					
Largest gov. party orient.(-1)					(0.004)					
Quality of humanuarasy					(0.004)	-0.150***				
Quality of bureaucracy ₍₋₁₎										
Dula aflam						(0.019)	0.047+			
Rule of law ₍₋₁₎							-0.047*			
							(0.027)	0.000		
Government effectiveness ₍₋₁₎								-0.062***		
								(0.020)		
Voice and accountability ₍₋₁₎									-0.104***	
									(0.022)	
Control of corruption ₍₋₁₎										-0.027***
_										(0.010)
Constant	2.674***	2.978***	3.350***	4.359***	3.092***	4.542***	1.302*	2.253***	1.743**	2.089**
NII ()	(0.670)	(0.506)	(0.363)	(0.379)	(0.356)	(0.455)	(0.707)	(0.463)	(0.747)	(0.859)
Nb. of observations	970	909	1025	911	1015	911	1082	1082	1082	911
Countries	81	86	90	73	88	73	97	97	97	73
AR(1)	0.10	0.09	0.09	0.09	0.09	0.10	0.09	0.09	0.09	0.09
AR(2) p-value	0.28	0.37	0.32	0.30	0.30	0.30	0.27	0.28	0.26	0.30
Hansen OID (p-value)	0.42	0.19	0.20	0.22	0.24	0.29	0.13	0.10	0.24	0.48
Nb. of instruments	60 Vas	71 Voc	71 Voc	71 Voc	71 Voc	71 Vas	60 Vas	70 Vos	59 Voc	59 Vac
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

^{*, ***,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: Same as in Table 3.4.

Political and institutional factors are also at play (Table 3.6). First, deeper democracy seems to foster tax revenue diversification. The coefficient associated with the degree of democracy (the Polity 2 index), is negative and significant (column 1). This finding may reflect that stronger democracy, including through greater checks and balances, strengthens the "sincerity" of the social contract between the government and taxpayers, thereby increasing the latter's willingness to pay taxes in exchange for improved quality of public services. Second, polarized political systems (captured either through the government fractionalization or political polarization index, columns 2-3) and stronger political stability (column 4) are conducive to

greater diversification of tax revenue. Indeed, a polarized political system may lead to a more diversified portfolio of revenue streams, in that politicians in these contexts have less room to manipulate the tax system disproportionately in favor of given constituencies, thus ending up sharing the tax burden more equally across all segments of the population and of economic activities, consistently with the common pool problem (Alesina and Perotti, 1995). Stronger political stability makes it easier for the government to focus on implementing its declared policies, including strengthening resilience to revenue volatility through diversifying the taxation sources, instead of embarking on rent-seeking activities. Third, more socialist-oriented governments are more prone to diversifying the taxation sources across all segments of the population and economic activities, as reflected by the negative coefficient associated with the largest government party's orientation (column 5). 61 Fourth, institutional quality, as captured by the quality of bureaucracy (column 6), the rule of law (column 7), government effectiveness (column 8), and government accountability (column 9), strengthens policymakers' ability to diversify tax revenue streams. The coefficients associated with these variables are negative and significant, suggesting that countries with strong institutions have greater capacity to administer compliance on diverse tax instruments. Similarly, stronger control of corruption helps diversify taxation sources (columns 10), as less corruption allows for better tax administration and reduced leakages in tax revenue, hence for greater tax compliance.

3.5. Impacts of Tax Revenue Diversification on Tax Revenue Volatility and Collection

This section investigates the potential benefits associated with the diversification of tax revenue sources. We rely on the econometric specification below to assess the influence of the RDI on both tax revenue collection and its volatility.

$$Y_{it} = \alpha + \beta Y_{i:t-1} + \gamma RDI_{it-1} + \sum_{k=1}^{K} \varphi_{k} Z_{k:it-1} + \eta_{i} + \pi_{t} + \varepsilon_{it}$$
(3.3)

_

⁶¹ Largest Government Party orientation with respect to economic policy is coded as follows: (i) Right, if the party is defined as conservative, Christian democratic, or right-wing, and assigned a value of 1; (ii) Center, if the party is defined as centrist or when the party position can best be described as centrist, and assigned a value of 2; (iii) Left if the party is defined as communist, socialist, social democratic, or left-wing, and assigned a value of 3; (iv) the variable equals zero if no information is available (Database on Political Institutions, 2015).

 RDI_{it} which stands for tax revenue diversification, is the explanatory variable of interest. We focus on two outcome variables (Y_{it}). On the one hand, we investigate the impact of tax revenue diversification on revenue collection performance, as captured by the tax-to-GDP ratio. On the other hand, we assess the effect of revenue diversification on the volatility of tax revenue. Subscripts i and t denote the country and time dimensions, respectively. We follow the existing literature and include a set of variables $Z_{k,it}$ in both specifications to isolate the effects of factors that influence revenue collection performances (per capita GDP, trade openness, informality, share of agricultural Value added, natural resource rents, social conflicts and political unrests, the exchange rate, public debt and FDI) and the volatility of tax revenue (GDP per capita, growth volatility, trade openness, natural resource rents, financial development, economic diversification, political stability and polarization, institutional quality, and the presence of fiscal rules), other than the RDI. η_i captures the country-specific and time-invariant effects, and ε_{it} is the error term. Time dummies are also included in our specifications to control for common shocks affecting our left-hand-side variables. Equations (3.3) is estimated using the GMM estimators.

We uncover suggestive evidence that greater tax revenue diversification improves non-oil revenue collection (Table 3.7). ⁶³ A higher RDI score, which reflects a high level of tax revenue concentration, is associated with lower tax revenue. In other terms, diversifying the portfolio of tax revenue streams improves revenue collection. In terms of magnitude, the results suggest that a 10 percent increase in the RDI score can yield additional tax revenue of up to 0.2-0.4 percentage points of GDP.

-

⁶² Volatility of tax revenue is measured as the standard deviation over a 3-year rolling window.

⁶³ The regressions passed the standard diagnostic tests for the validity of instruments – the AR (2) test for the absence of second-order autocorrelation of the error term and Hansen's overidentification test.

Table 3.7. Effects of RDI on tax revenue mobilization

		Baseline ar	d additiona	l controls			Addi	itional conti	rols		Political and institut	ional controls
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Tax revenue ₍₋₁₎	0.866***	0.933***	0.925***	0.929***	0.928***	0.966***	0.955***	0.912***	0.917***	0.929***	0.938***	0.922***
	(0.013)	(0.010)	(0.010)	(0.014)	(0.011)	(0.013)	(0.010)	(0.013)	(0.010)	(0.015)	(0.012)	(0.008)
RDI ₍₋₁₎	-0.036***	-0.025***	-0.028***	-0.016***	-0.021***	-0.017*	-0.021***	-0.028***	-0.018**	-0.029***	-0.015*	-0.012**
	(0.010)	(0.008)	(0.006)	(0.006)	(800.0)	(0.009)	(800.0)	(800.0)	(0.007)	(0.009)	(0.009)	(0.005)
Real GDP_pc ₍₋₁₎	0.177***	0.073	0.142***	0.151***	0.089*	-0.170***	-0.137***	0.173***	0.234***	0.039	-0.021	0.118***
	(0.051)	(0.050)	(0.051)	(0.044)	(0.054)	(0.042)	(0.034)	(0.052)	(0.061)	(0.049)	(0.049)	(0.043)
Real GDP_pc_squared ₍₋₁₎	-0.010***	-0.005*	-0.009***	-0.010***	-0.006*	0.008***	0.006***	-0.011***	-0.014***	-0.003	-0.001	-0.008***
-1 - 1 (1)	(0.003)	(0.003)	(0.003)	(0.002)	(0.003)	(0.002)	(0.002)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Trade openness ₍₋₁₎	, ,	0.002	-0.001	-0.001	0.001	0.002	0.002	0.016*	0.001	0.003	0.000	-0.001
		(0.005)	(0.005)	(0.005)	(0.006)	(0.003)	(0.003)	(0.009)	(0.006)	(0.004)	(0.004)	(0.009)
Informality ₍₋₁₎		(0.005)	-0.038*	(0.003)	(0.000)	(0.003)	(0.003)	(0.003)	(0.000)	(0.00-1)	(0.00-1)	(0.003)
mormancy (-1)			(0.023)									
Agricultural VA ₍₋₁₎			(0.023)	-0.018**								
Agricultural VA(-1)				(0.008)								
Natural ress. rents ₍₋₁₎				(0.000)	-0.102***							
ivaturariess. rems ₍₋₁₎												
lutural andiata					(0.024)	0.004*						
Internal conflicts ₍₋₁₎												
D 192 1 2 1						(0.002)	0.001+++					
Political risks ₍₋₁₎							0.001***					
							0.000					
Official ER ₍₋₁₎								0.015***				
								(0.005)				
Public Debt/GDP ₍₋₁₎									0.028***			
									(0.006)			
FDI net inflows ₍₋₁₎										0.003*		
										(0.001)		
Quality of bureaucracy ₍₋₁₎											0.040***	
											(0.007)	
Democracy ₍₋₁₎												0.002**
												(0.001)
Constant	-0.318	-0.050	-0.136	-0.264	-0.093	0.924***	0.785***	-0.457**	-0.769***	0.059	0.401**	-0.168
	(0.208)	(0.199)	(0.178)	(0.168)	(0.212)	(0.180)	(0.164)	(0.200)	(0.258)	(0.184)	(0.200)	(0.173)
Nb. of observations	1223	1191	958	1139	1191	930	930	989	1174	1109	930	991
Countries	104	102	84	101	102	75	75	90	100	100	75	83
AR(1)	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0.00	0.00
AR(2) p-value	0.43	0.49	0.11	0.78	0.48	0.08	0.08	0.48	0.46	0.97	0.08	0.29
Hansen OID (p-value)	0.25	0.16	0.10	0.13	0.17	0.86	0.79	0.41	0.33	0.27	0.64	0.22
Nb. of instruments	80	81	87	96	82	84	84	84	84	84	82	83
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: The RDI variable, GDP per capita and its squared term are considered endogenous, and instrumented using their own respective lags. The number of internal instruments is restricted to avoid the overfitting problem. All specifications reject the null of the AR (1). Hansen's p-value validates the over-identification restrictions across all specifications.

Tax revenue diversification is also found to be associated with lower tax revenue volatility (Table 3.8).⁶⁴ This is reflected in the positive and statistically significant coefficient associated with the RDI (tax revenue concentration), which lends support to the long-held informal view that greater reliance on a diversified portfolio of tax revenue streams mitigates the volatility of tax revenue significantly. Put simply, there is suggestive evidence that countries with the more diversified structure of tax sources are more likely to exhibit stronger resilience to revenue volatility arising from the business cycle fluctuations. In terms of magnitude, the

threshold).

84

⁶⁴ Standard diagnostic tests for the validity of instruments are passed in most cases (except in columns 7 and 9, where the P-value associated with Hansen's overidentification test did not pass the conventional 5 percent

results suggest that a one-point improvement in tax revenue diversification is associated with a reduction in tax revenue volatility of up to 0.5-2.8 points.

Table 3.8. Effects of RDI on Tax Revenue Volatility

	I abi	e 5.0. E	Hects C	יט ועא ויי	IIIAAN	evenue	Voiatiii	Ly		
Dependent variable: Volatility o	of revenue									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Revenue volatility ₍₋₁₎	0.694***	0.657***	0.502***	0.466***	0.681***	0.779***	0.756***	0.758***	0.755***	0.828***
7()	(0.019)	(0.009)	(0.005)	(0.025)	(0.009)	(0.016)	(0.007)	(0.005)	(0.007)	(0.015)
RDI ₍₋₁₎	2.422***	2.801***	1.644***	1.397**	2.006***	0.981*	0.487**	1.020***	1.019***	2.217***
(-1)	(0.636)	(0.317)	(0.243)	(0.545)	(0.233)	(0.516)	(0.229)	(0.199)	(0.239)	(0.560)
Real GDP_pc ₍₋₁₎	3.455***	2.908***	3.801***	10.047***	6.918***	4.798***	7.070***	5.070***	6.818***	13.302***
-1 * *(*1)	(1.240)	(0.918)	(0.913)	(2.051)	(0.971)	(1.052)	(0.795)	(0.671)	(0.618)	(1.063)
Real GDP_pc_squared(-1)	-0.170**	-0.139***	-0.153***	-0.564***	-0.363***	-0.270***	-0.399***	-0.287***	-0.398***	-0.613***
== . = r-1=4 (-1)	(0.071)	(0.051)	(0.054)	(0.114)	(0.058)	(0.064)	(0.046)	(0.040)	(0.035)	(0.057)
rade openness ₍₋₁₎	-2.255***	-1.610***	-0.332**	0.986**	-1.970***	0.098	0.121	0.206	0.074	-2.924***
rade opermess ₍₋₁₎	(0.514)	(0.311)	(0.135)	(0.432)	(0.346)	(0.241)	(0.162)	(0.151)	(0.177)	(0.428)
Growth volatility ₍₋₁₎	0.075***	0.031	-0.058	0.082	0.093**	0.030	0.028**	0.023*	0.030**	-0.005
nowan volatility (-1)	(0.026)	(0.048)	(0.039)	(0.065)	(0.045)	(0.019)	(0.011)	(0.013)	(0.012)	(0.034)
latural roc ront	0.009	0.046)	0.104***	0.086***	0.109***	0.019)	-0.016***	0.008***	-0.014***	0.094***
latural res. rent ₍₋₁₎										
_	(0.011)	(0.006)	(0.003)	(0.009)	(0.010)	(800.0)	(0.003)	(0.003)	(0.004)	(0.005)
xport concent. ₍₋₁₎	0.217	0.276***	-0.419***	0.046	0.689***	0.369***	0.315***	0.303***	0.368***	-0.420***
	(0.134)	(0.087)	(0.056)	(0.174)	(0.122)	(0.085)	(0.055)	(0.027)	(0.060)	(0.128)
Financial development ₍₋₁₎	0.222	0.394	-4.655***	3.401**	-0.401	6.704***	5.489***	6.029***	5.796***	-4.900**
	(1.527)	(0.933)	(0.925)	(1.654)	(0.889)	(1.457)	(0.756)	(0.558)	(0.855)	(2.146)
olity_2 ₍₋₁₎		-0.035***								
		(0.013)								
Control of corruption ₍₋₁₎			0.096**							
			(0.048)							
Sovernment stability ₍₋₁₎				-0.465***						
3(1)				(0.067)						
Political polarization ₍₋₁₎				()	0.129*					
ontical polarization(-1)					(0.074)					
oice and accountatbility ₍₋₁₎					(0.074)	-0.961***				
oice and accountationity ₍₋₁₎										
						(0.167)	0.003***			
egulatory quality ₍₋₁₎							-0.893***			
							(0.113)			
Rule of law ₍₋₁₎								-0.607***		
								(0.122)		
Government effectivness ₍₋₁₎									-0.312***	
									(0.107)	
Fiscal rules ₍₋₁₎										-0.663***
										(0.215)
Nb. of observations	1167	988	919	919	930	1108	1108	1108	1108	751
Countries	96	80	72	72	85	96	96	96	96	57
AR(1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AR(2) p-value	0.71	0.68	0.39	0.46	0.54	0.76	0.73	0.73	0.72	0.35
lansen OID (p-value)	0.07	0.26	0.17	0.94	0.06	0.08	0.01	0.13	0.02	0.95
Nb. of instruments	74	88	88	100	81	75	86	102	86	77
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: Same as in Table 7.

3.6. Conclusion

This chapter proposed a new tax revenue diversification index (RDI) for a broad panel of 128 countries over the period 2000-15. To the best of our knowledge, this is the first study to create such an index at the national level. Existing tax revenue diversification indexes were only

computed at the states level for the US. In addition, our RDI builds on the Theil index, which features more appealing properties, notably in terms of stability and robustness to outliers.

Key patterns stand out of the RDI. On average, AEs relied on a more diversified structure of tax sources than EMEs and LIDCs, by as high as at least the double in terms of RDI score. Resources-rich countries and fragile states exhibit the largest tax revenue concentration, reflecting their overdependence on commodity revenues and official development assistance, and their weak tax administration capacity, respectively. From a regional perspective, North American and EU countries record the most diversified structure of tax sources, while GCC, South Asian, Latin American, and Sub-Saharan African have the least diversified portfolio of tax revenue streams.

Empirical investigations suggest that beyond economic diversification, tax revenue diversification is shaped by macroeconomic, political and institutional conditions. On the macroeconomic front, countries' taxation sources get more diversified as their economy develops, insofar as they strengthen their institutions and improve their tax administration capacity, until a tipping point, with richer countries then finding it harder to further diversify their structure of tax sources. Additionally, countries with more concentrated and informal economic structures, stronger dependency to aid, and plagued with macroeconomic instability, are more prone to relying on a concentrated portfolio of tax revenue streams. Political and institutional factors are also at play: deeper democracy makes it easier to diversify the portfolio of tax revenue streams, while greater stability and polarization of the political system are more conducive to greater tax revenue diversification.

Last but not the least, we find evidence supportive of the long-held view that tax revenue diversification matters a great deal for mitigating government revenue volatility. And it does not stop there: tax revenue diversification also improves tax revenue collection. Tax revenue diversification thus stands as a key factor for strengthening resilience to fiscal risks arising from government revenue volatility, critical for ensuring a sustainable delivery of public services throughout different phases of the business cycle. The current coronavirus pandemic adds further credence to this criticality of relying on a diversified portfolio of tax revenue streams for strengthening fiscal policy resilience to large swings to business cycle fluctuations.

Appendices

Appendix 3.1. Sample and Country Groups

Country	Income	Region	Small	Fragile	Resource	Country	Income	Region	Small	Fragile	Resource
A1 :	group	- AFNIA			rich country		group	145114			rich country
Algeria	UMIC	MENA	No	No	Yes	Kuwait	HIC	MENA	No	No	Yes
Angola	UMIC	SSA	No	No	Yes	Kyrgyz Republic	LMIC	ECA	No	No	No
Anguilla	HIC HIC	ECA LAC	No Yes	No No	No No	Latvia Lebanon	HIC UMIC	ECA MENA	No No	No Yes	No No
Antigua and Barbuda Armenia, Republic of	LMIC	ECA	No	No	No	Lesotho	LMIC	SSA	Yes	No	No
Australia	HIC	EAP	No	No	Yes	Lithuania	HIC	ECA	No	No	No
Austria	HIC	ECA	No	No	No	Luxembourg	HIC	ECA	No	No	No
	UMIC	ECA				•	LIC	SSA			
Azerbaijan, Republic of			No	No	Yes	Malawi			No	No	No
Bahamas, The	HIC	LAC	Yes	No	No	Malaysia	UMIC	EAP SA	No	No	No
Bahrain, Kingdom of	HIC	MENA	Yes	No	Yes	Maldives	UMIC		Yes	No	No
Bangladesh	LIC	SA	No	No	No	Malta	HIC	MENA	Yes	No	No
Barbados	HIC	LAC	Yes	No	No	Marshall Islands, Republic of	UMIC	EAP	Yes	Yes	No
Belgium	HIC	ECA	No	No	No	Mauritius	UMIC	SSA	Yes	No	No
Benin	LIC	SSA	No	No	No	Micronesia, Federated States of		EAP	Yes	Yes	No
Bhutan	LMIC	SA	Yes	No	No	Moldova	LMIC	ECA	No	No	No
Bolivia	LMIC	LAC	No	No	Yes	Montserrat	HIC	ECA	No	No	No
Botswana	UMIC	SSA	Yes	No	Yes	Morocco	LMIC	MENA	No	No	No
Brazil	UMIC	LAC	No	No	No	Mozambique	LIC	SSA	No	No	Yes
Bulgaria	UMIC	ECA	No	No	No	Namibia	UMIC	SSA	Yes	No	No
Burkina Faso	LIC	SSA	No	No	No	Nepal	LIC	SA	No	No	No
Burundi	LIC	SSA	No	Yes	No	Netherlands	HIC	ECA	No	No	No
Cabo Verde	LMIC	SSA	Yes	No	No	Norway	HIC	ECA	No	No	Yes
Cambodia	LIC	EAP	No	No	No	Oman	HIC	MENA	No	No	Yes
Canada	HIC	NA	No	No	Yes	Pakistan	LMIC	SA	No	No	No
China, P.R.: Mainland	UMIC	EAP	No	No	No	Paraguay	LMIC	LAC	No	No	No
Colombia	UMIC	LAC	No	No	Yes	Peru	UMIC	LAC	No	No	Yes
Congo, Democratic Republic of	LIC	SSA	No	Yes	Yes	Philippines	LMIC	EAP	No	No	No
Congo, Republic of	LMIC	SSA	No	No	Yes	Poland	HIC	ECA	No	No	No
Costa Rica	UMIC	LAC	No	No	No	Portugal	HIC	ECA	No	No	No
Côte d'Ivoire	LMIC	SSA	No	Yes	Yes	Qatar	HIC	MENA	Yes	No	Yes
Croatia	HIC	ECA	No	No	No	Romania	UMIC	ECA	No	No	No
Cyprus	HIC	ECA	Yes	No	No	Samoa	LMIC	EAP	Yes	No	No
Czech Republic	HIC	ECA	No	No	No	San Marino	HIC	ECA	Yes	No	No
Denmark	HIC	ECA	No	No	No	São Tomé and Príncipe	LMIC	SSA	Yes	No	No
Dominica	UMIC	LAC	Yes	No	No	Serbia, Republic of	UMIC	ECA	No	No	No
Dominican Republic	UMIC	LAC	No	No	No	Seychelles	UMIC	SSA	Yes	No	No
Egypt	LMIC	MENA	No	No	No	Sierra Leone	LIC	SSA	No	Yes	No
El Salvador	LMIC	LAC	No	No	No	Singapore	HIC	EAP	No	No	No
Equatorial Guinea	UMIC	SSA	Yes	No	Yes	Slovak Republic	HIC	ECA	No	No	No
Estonia	HIC	ECA	Yes	No	No	Slovenia	HIC	ECA	No	No	No
Ethiopia	LIC	SSA	No	No	No	Solomon Islands	LMIC	EAP	Yes	Yes	No
Finland	HIC	ECA	No	No	No	South Africa	UMIC	SSA	No	No	Yes
France	HIC	ECA	No	No	No	Spain	HIC	ECA	No	No	No
Georgia	LMIC	ECA	No	No	No	Sri Lanka	LMIC	SA	No	No	No
Germany	HIC	ECA	No	No	No	St. Kitts and Nevis	HIC	LAC	Yes	No	No
Ghana	LMIC	SSA	No	No	Yes	St. Lucia	UMIC	LAC	Yes	No	No
Greece	HIC	ECA	No	No	No	St. Vincent and the Grenadines	UMIC	LAC	Yes	No	No
Grenada	UMIC	LAC	Yes	No	No	Swaziland	LMIC	SSA	Yes	No	No
Guatemala	LMIC	LAC	No	No	No	Sweden	HIC	ECA	No	No	No
Honduras	LMIC	LAC	No	No	No	Switzerland	HIC	ECA	No	No	No
Hungary	UMIC	EAP	No	No	No	Syrian Arab Republic	LMIC	MENA	No	Yes	Yes
Iceland	HIC	EAP	Yes	No	No	Thailand	UMIC	EAP	No	No	No
India	LMIC	SA	No	No	No	Togo	LIC	SSA	No	Yes	No
Indonesia	LMIC	EAP	No	No	Yes	Tunisia	UMIC	MENA	No	No	No
Ireland	HIC	EAP	No	No	No	Turkey	UMIC	ECA	No	No	No
Israel	HIC	EAP	No	No	No	Uganda	LIC	SSA	No	No	No
Italy	HIC	ECA	No	No	No	Ukraine	LMIC	ECA	No	No	No
Jamaica	UMIC	LAC	Yes	No	No	United Arab Emirates	HIC	MENA	No	No	Yes
Japan	HIC	EAP	No	No	No	United Kingdom	HIC	ECA	No	No	No
Jordan	UMIC	EAP	No	No	No	United States	HIC	NA	No	No	No
Kenya	LIC	SSA	No	No	No	Vietnam	LMIC	EAP	No	No	No
Kiribati	LMIC	EAP	Yes	Yes	No	West Bank and Gaza	LMIC	MENA	No	Yes	No
Korea, Republic of	HIC	EAP	No	No	No	Yemen, Republic of	LMIC	MENA	No	Yes	Yes
Kosovo, Republic of	LMIC	ECA	No	Yes	No						

Income groups: HIC: High Income Country; UMIC: Upper Middle Income Country; LMIC: Lower Middle Income. Country; LIC: Low Income Country. Regions: ECA: Europe and Central Asia; EAP: East Asia and Pacific; SA: South Asia; LAC: Latin America; SSA: Sub-Saharan Africa; NA: North America; MENA: Middle East and North Africa

Appendix 3.2. Data Sources and Descriptions

Variables	Description	Data sources			
Real GDP_pc	Real GDP per capita	IMF's World Economic Outlook (WEO) database			
Real GDP_pc_squared	Square of real GDP per capita	Authors' calculations			
Financial development	Index of financial development	Svirydzenka (2016)			
Trade openness	Sum of imports and exports over GDP	World Bank's World Development Indicators			
Exports concentration index	Theil index of exports concentration	IMF datasets			
Natural resource rents	Natural resource rents in percentage of GDP	World Bank's World Development Indicators			
Net ODA received_pc	Net Official Development Assistance received per capita	World Bank's World Development Indicators			
Informal share	Share of the informal sector in the economy (percentage)	Medina, Jonelis and Cangul (2017)			
Inflation rate / Informality	Consumer price index growth rate (in percentage)	IMF's World Economic Outlook (WEO) database			
	It measures the extent of investment restrictions, capital account oppenness				
De jure globalization index	and international investment agreements.	Gygli et al. (2019)			
GDP growth	Rate of real GDP growth	IMF's World Economic Outlook (WEO) database			
Human capital index	Human capital index, based on years of schooling and returns to education	Penn World Tables 9.1			
IMF program dummy	Binary variable taking the value of 1 if the country has an IMF program and 0 otherwise	IMF datasets			
Democracy	Degree of democracy. The polity 2 score ranges from -10 to +10, with higher value representing more democracy.	Marshall and Gurr (2018)			
Political polarization	It measures the maximum polarization between the executive party and the four principle parties of the legislature.	Database of Political Institutions			
Government fractionalization	It measures the probability that two deputies picked at random from among the government parties will be of different parties.	Database of Political Institutions			
Political/Government stability	It measures the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means.	World Bank's Worldwide Governance Indicators			
Largest gov. party orient.	It measures the largest party orientation with respect to economic policy	Database of Political Institutions			
Quality of bureaucracy	It measures the institutional strength and quality of the bureaucracy	International Country Risk Guide (ICRG)			
Rule of law	It measures the extent to which agents have confidence in and abide by the rules of society	World Bank's Worldwide Governance Indicators			
Government effectiveness	It measures the quality of public services, the quality of the civil service and the degree of its independence from political pressures and the quality of policy formulation	World Bank's Worldwide Governance Indicators			
Voice and accountability	It measures the extent to which a country's citizens are able to participate in selecting their government, and freedom of expression, association and a free media	World Bank's Worldwide Governance Indicators			
Control of corruption	It represents the extent to which public power is exercised for private gain, including petty and grand forms of corruption.	World Bank's Worldwide Governance Indicators			
Agriculture VA	Agriculture valued added (in percentage of GDP)	World Bank's World Development Indicators			
Growth volatility	Standard deviation of GDP growth (using rolling window method)	Authors' calculations			
Regulatory quality	It measures the ability of the government to formulate and implement sound policies and regulations that permit and promote private sector development.	World Bank's Worldwide Governance Indicators			
Polity 2	Measure of the degree of democracy/ autocracy ranging from +10 (strongly democratic) to !10 (strongly autocratic)	Marshall and Gurr (2018)			
Political risk	Assessment of countries's political stability				
Internal conflicts	Assessment of political violence in the country and its actual or potential impact on governance	International Country Risk Guide (ICRG)			
Fiscal rules	Dummy: 1 if numerical fiscal rule in place, 0 otherwise	IMF Fiscal Rules Dataset			
Foreign direct investment (FDI),	Direct investment equity flows in the reporting economy. It is the sum of	World Papilis Warldwide Coversants Indicates			
net inflows	equity capital, reinvestment of earnings, and other capital.	World Bank's Worldwide Governance Indicators			
Public debt (% GDP)	General government total debt, percent of fiscal year GDP				
Overall fiscal balance	Overall fiscal balance percentage of GDP	IMF's World Economic Outlook (WEO) database			
Exchange rate	Official exchange rate (LCU per US\$, period average)	World Bank's Worldwide Governance Indicators			

Appendix 3.3. Countries with filled up missing observations

Country	Year(s)
Armenia, Republic of	2003
Brazil	2000-2005
Burundi	2010 & 2015
Cabo Verde	2010-2015
Canada	2010 & 2015
China, P.R: Mainland	2000-2004
Congo, Republic of	2000-2003
Costa Rica	2000-2001
Croatia	2000-
Egypt	2000-2001
Georgia	2000-2002
Honduras	2000-2002
Indonesia	2000 & 2007
Jamaica	2000-2002
Korea, Republic of	2000 & 2006
Lesotho	2000-2002
Mauritius	2000-2001
Moldova	2000-2001
Seychelles	2000-2004
Turkey	2000 & 2007

Appendix 3.4. Full RDI-based Country Ranking

2000-2004			2005-2009			2010-2015		
Rank	Country	RDI	Rank	Country	RDI	Rank	Country	RDI
1	Japan	0.053	1	Japan	0.055	1	Japan	0.057
2	France	0.160	2	United Kingdom	0.140	2	France	0.153
3	United Kingdom	0.167	3	France	0.149	3	United Kingdom	0.172
4	United States	0.188	4	United States	0.156	4	United States	0.176
5	South Africa	0.192	5	Switzerland	0.182	5	South Africa	0.178
6	Switzerland	0.193	6	South Africa	0.187	6	Switzerland	0.181
7	Norway	0.216	7	Israel	0.192	7	Singapore	0.186
8	Australia	0.229	8	Australia	0.193	8	Australia	0.193
9	Israel	0.230	9	Norway	0.204	9	Norway	0.207
10	Spain	0.243	10	Spain	0.209	10	Korea, Republic of	0.217
11	Luxembourg	0.245	11	Belgium	0.235	11	Israel	0.220
12	Belgium	0.252	12	Cyprus	0.254	12	Belgium	0.230
13	Netherlands	0.266	13	Luxembourg	0.255	13	Spain	0.238
14	Ukraine	0.285	14	Korea, Republic of	0.266	14	Luxembourg	0.252
15	Ireland	0.289	15	Netherlands	0.287	15	Ireland	0.265
16	Cyprus	0.300	16	Ireland	0.297	16	Cyprus	0.277
17	Oman	0.301		Barbados	0.310		Iceland	0.297
18	Finland	0.305		Germany	0.323		Netherlands	0.302
19	Italy	0.318		Poland	0.330		Italy	0.330
20	Greece	0.334		Italy	0.335		Malta	0.330
21	Yemen, Republic of	0.337	-	Finland	0.335		Germany	0.332
22	Latvia	0.337		Ukraine	0.338		Georgia	0.338
23	Poland	0.341		Oman	0.340		Greece	0.339
24	Barbados	0.349		Greece	0.344		Portugal	0.341
25	Czech Republic	0.352		Iceland	0.344		Oman	0.342
26	Bhutan	0.352		Indonesia	0.344		India	0.345
27	Germany	0.352		Latvia	0.350	-	Poland	0.350
28	Denmark	0.378		Malta	0.355		Kenya	0.364
29	Iceland	0.378		Czech Republic	0.358		Finland	0.367
30	Malaysia	0.385		India	0.363		Azerbaijan, Republic of	0.368
31	Portugal	0.385		Denmark	0.374		Barbados	0.370
32	Malta	0.405		Azerbaijan, Republic of	0.375		Indonesia	0.379
33	Montserrat	0.405		Yemen, Republic of	0.382		Slovak Republic	0.375
34	Romania	0.408		Portugal	0.383		Malawi	0.391
35	Austria	0.408		Lithuania	0.385		Philippines	0.391
36	Philippines	0.403		Jamaica	0.387		Latvia	0.391
37	Morocco	0.427		Montserrat	0.389		Denmark	0.396
38		0.427		Slovenia	0.303		Egypt	0.398
39	Egypt Slovak Republic	0.431		Thailand	0.402		Montserrat	0.403
40	Canada	0.434		Egypt	0.407		Malaysia	0.403
41	Namibia	0.430		Romania	0.407	-	Tunisia	0.404
42		0.444		Austria	0.403		Ukraine	0.404
43	Georgia India	0.447		Slovak Republic	0.415		Peru	0.404
44		0.448			0.419		Honduras	0.404
45	Slovenia Jamaica	0.454		Philippines Canada	0.419		Czech Republic	0.406
46		0.453			0.427			0.415
47	Sweden	0.462		Malaysia Malawi	0.428		Jamaica Brazil	0.415
48	Hungary	0.462			0.426			0.413
46 49	São Tomé and Príncipe Thailand	0.468		Georgia	0.432		Thailand Austria	0.424
50				Tunisia				
	Lithuania	0.473		Kenya	0.434		Namibia	0.427
51 52	Bulgaria	0.476		Morocco	0.443		Romania	0.431
	Honduras	0.480		Hungary	0.443		Yemen, Republic of	0.435
53	Estonia	0.484		Peru	0.444		Costa Rica	0.435
54	Bahrain, Kingdom of	0.495		Honduras	0.445		Canada	0.440
55	San Marino	0.501		Sweden	0.452		Congo, Republic of	0.442
56	St. Kitts and Nevis	0.523		El Salvador	0.454		Morocco	0.443
57	Tunisia	0.534		Brazil	0.465		Sweden	0.449
58	St. Vincent and the Grenadines	0.537		Namibia	0.481		Solomon Islands	0.454
59	Peru	0.547		Estonia	0.484		Sierra Leone	0.464
60	El Salvador	0.549		Congo, Republic of	0.491		Micronesia, Federated States of	0.470
61	Swaziland	0.574		Turkey	0.518		Mozambique	0.473
62	Dominica	0.578		Costa Rica	0.533		China, P.R.: Mainland	0.474
63	Vietnam	0.585		Bhutan	0.542		Bhutan	0.483
64	Ghana	0.595	64	Bulgaria	0.543	64	Ghana	0.487

Appendix 3.4. Full RDI-based Country Ranking (Cont'd)

65	Sierra Leone	0.595		China, P.R.: Mainland	0.558 6		0.491
66	Benin	0.607		Cabo Verde	0.568 66		0.496
67	Moldova	0.614		São Tomé and Príncipe	0.575 67	7 Estonia	0.497
68	St. Lucia	0.618	68	Ghana	0.589 68	8 Slovenia	0.498
69	Grenada	0.649	69	Vietnam	0.590 69	9 São Tomé and Príncipe	0.516
70	Côte d'Ivoire	0.649	70	Armenia, Republic of	0.593 70	O Angola	0.521
71	Pakistan	0.656	71	Côte d'Ivoire	0.594 7		0.522
72	Armenia, Republic of	0.656	72	Grenada	0.603 72		0.523
73	Colombia	0.665	73	St. Kitts and Nevis	0.608 73		0.524
74	Lesotho	0.684		St. Vincent and the Grenadines	0.609 74		0.526
75	Congo, Democratic Republic of	0.688		San Marino	0.610 7		0.531
76	Angola	0.693		Sierra Leone	0.615 76	,	0.534
77	•			Colombia	0.621 7	' '	
	Syrian Arab Republic	0.700				,	0.544
78	Ethiopia	0.700		Congo, Democratic Republic of	0.623 78	3	0.550
79	Dominican Republic	0.702		Marshall Islands, Republic of	0.629 79	3 ,	0.553
80	Kuwait	0.714		St. Lucia	0.632 80	J .	0.563
81	Croatia	0.720		Dominica	0.644 8		0.566
82	Congo, Republic of	0.732		Croatia	0.647 82		0.568
83	Togo	0.751	83	Serbia, Republic of	0.652 83	Bangladesh	0.587
84	Nepal	0.774	84	Benin	0.671 84	3	0.604
85	Mauritius	0.783	85	Swaziland	0.684 85	5 Lesotho	0.607
86	Kenya	0.799	86	Mauritius	0.688 86	St. Vincent and the Grenadines	0.611
87	Uganda	0.814	87	Uganda	0.702 87	7 St. Kitts and Nevis	0.611
88	Jordan	0.816		Guatemala	0.706 88		0.628
89	Algeria	0.818	89	Algeria	0.707 89	9 Serbia, Republic of	0.631
90	Sri Lanka	0.822		Moldova	0.716 90		0.633
91	Bangladesh	0.824		Bangladesh	0.721 9		0.635
92	Guatemala	0.875		Angola	0.729 92		0.636
93		0.884			0.736 93		0.640
94	Antigua and Barbuda			Dominican Republic			
-	Cambodia	1.010		Togo	0.738 94		0.647
95	Bolivia	1.040		Antigua and Barbuda	0.742 95		0.653
96	Bahamas, The	1.203		Seychelles	0.749 96	•	0.654
97	Maldives	1.213		Jordan	0.749 97		0.659
98	Qatar	1.215		Micronesia, Federated States of	0.752 98		0.659
99	Anguilla	1.340		Kuwait	0.765 99	9 Dominica	0.669
100	Azerbaijan, Republic of		100	Ethiopia	0.773 10	00 Ethiopia	0.710
101	Botswana		101	Syrian Arab Republic	0.779 10	01 Pakistan	0.722
102	Brazil		102	Lesotho	0.790 10	02 Nepal	0.740
103	Burkina Faso		103	Paraguay	0.805 10	D3 Benin	0.741
104	Burundi		104	Nepal	0.824 10	04 Moldova	0.742
105	Cabo Verde		105	Equatorial Guinea	0.838 10	05 Colombia	0.742
106	China. P.R.: Mainland		106	Botswana	0.860 10		0.750
107	Costa Rica		107	Sri Lanka	0.875 10	3	0.755
108	Equatorial Guinea		108	Kyrgyz Republic	0.876 10		0.772
109	Indonesia	•••	100	Cambodia	0.906 10	5 ,	0.772
1109	Kiribati	•••	1109	Bolivia	0.966 1	, , , , , , , , , , , , , , , , , , , ,	0.790
		•••					
111	Korea, Republic of		111	Bahrain, Kingdom of	1.029 1	· •	0.833
112	Kosovo, Republic of		112	West Bank and Gaza	1.087 1		0.842
113	Kyrgyz Republic		113	Maldives	1.141 1	•	0.857
114	Lebanon		114	Bahamas, The	1.162 1		0.898
115	Malawi		115	Qatar	1.173 1		0.942
116	Marshall Islands, Republic of		116	Anguilla	1.350 1		1.017
117	Micronesia, Federated States of		117	Burkina Faso	1.350 1		1.041
118	Mozambique		118	Burundi	1	18 Bahamas, The	1.117
119	Paraguay		119	Kiribati	1	19 Qatar	1.159
120	Samoa		120	Kosovo, Republic of	12	20 Bahrain, Kingdom of	1.169
121	Serbia, Republic of		121	Lebanon	12	. 3	1.218
122	Seychelles		122	Mozambique		22 Anguilla	1.317
123	Singapore		123	Pakistan		23 Kuwait	1.336
124	Solomon Islands		124	Samoa		24 Bolivia	1.336
125	Turkey		125	Singapore	4.		
126	United Arab Emirates	•••	126	Solomon Islands		26 Equatorial Guinea	
127		•••	127	United Arab Emirates		•	•••
14/	West Bank and Gaza		127	Officed Arab Effiliates	ا	27 Syrian Arab Republic	•••

Sources: Authors' calculations

Appendix 3.5. Alternative Estimates

Dependent variable: Revenue diversification index (RDI)							
•	Baseline	Controling for VA sh		are of services			
	(1)	(2)	(3)	(4)			
RDI _(t-1)	0.611***	0.478***	0.459***	0.453***			
	(0.011)	(0.024)	(0.022)	(0.023)			
Log real GDP_pc _(t-1)	-0.6170***	-0.8073***	-0.7172***	-0.7804***			
	(0.080)	(0.123)	(0.128)	(0.135)			
Log real GDP_pc_squared _(t-1)	0.038***	0.051***	0.0442***	0.0487***			
	(0.005)	(800.0)	(800.0)	(0.009)			
Financial development _(t-1)	-0.3958***	-0.6439***	-0.5385***	-0.6052***			
	(0.108)	(0.133)	(0.138)	(0.139)			
Trade openness _(t-1)	-0.0318*	-0.0212	-0.0257	-0.0116			
	(0.019)	(0.026)	(0.026)	(0.028)			
Export concentration index _(t-1)	0.0252***	0.0294***	0.0339***	0.0302***			
	(0.007)	(0.009)	(0.009)	(0.009)			
VA Services / VA Agri.		-0.0001***		-0.0001***			
		0.000		0.000			
VA Services / VA Manuf.			0.0023**	0.0020**			
			(0.001)	(0.001)			
Constant	2.631***	3.486***	3.137***	3.361***			
	(0.346)	(0.518)	(0.540)	(0.564)			
Nb. of observations	1141	1089	1074	1074			
Countries	97	96	95	95			
AR(1)	0.08	0.04	0.05	0.06			
AR(2) <i>p-value</i>	0.3	0.14	0.25	0.25			
Hansen OID (<i>p-value</i>)	0.07	0.11	0.2	0.22			
Nb. of instruments	70	71	71	72			
Year FE	Yes	Yes	Yes	Yes			
Region FE	Yes	Yes	Yes	Yes			

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 3.6. Full HHI RDI-based Country Ranking

	2000-2004			2005-2009			2010-2015	
Rank	Country	RDI	Rank	Country	RDI	Rank	Country	RDI
1	Japan	0.276	1	Japan	0.276	1	Japan	0.277
2	France	0.326	2	United Kingdom	0.316	2	France	0.322
3	Norway	0.328	3	France	0.321	3	South Africa	0.325
4	United Kingdom	0.329	4	Norway	0.322	4	Norway	0.326
5	South Africa	0.329	5	South Africa	0.323	5	United Kingdom	0.332
6	Switzerland	0.341	6	Australia	0.331	6	Switzerland	0.335
7	Oman	0.342		United States	0.334	7	Australia	0.335
8	Australia	0.35	8	Switzerland	0.335	8	Singapore	0.342
9	Luxembourg	0.351	9	Israel	0.343	9	United States	0.346
10	United States	0.351	10	Spain	0.347	10	Belgium	0.355
11	Israel	0.356	11	Belgium	0.356	11	Luxembourg	0.356
12	Yemen, Republic of	0.364		Luxembourg	0.357		Spain	0.362
13	Belgium	0.364	13	Oman	0.368	13	Israel	0.363
14	Spain	0.366		Ireland	0.379	14	Korea, Republic of	0.364
15	Ukraine	0.369	15	Cyprus	0.381		Ireland	0.368
16	Ireland	0.373		Netherlands	0.384		Oman	0.371
17	Finland	0.377		India	0.385		India	0.372
18	Bhutan	0.379	18	Germany	0.389		Iceland	0.382
19	Netherlands	0.379		Korea, Republic of	0.390		Malta	0.383
20	Italy	0.392		Finland	0.391		Cyprus	0.385
21	Malaysia	0.395		Yemen, Republic of	0.394		Kenya	0.389
22	Cyprus	0.401		Italy	0.396		Netherlands	0.390
23	Germany	0.404		Iceland	0.403		Germany	0.393
24	Czech Republic	0.405		Indonesia	0.403		Italy	0.396
25	Iceland	0.414		Malta	0.406		Malawi	0.407
26	Austria	0.416		Czech Republic	0.406		Finland	0.408
27	Latvia	0.419		Ukraine	0.408		Malaysia	0.409
28	Denmark	0.425		Jamaica	0.414		Philippines	0.410
29	Greece	0.429	29	Austria	0.417		Portugal	0.416
30	Malta	0.43		Barbados	0.418		Georgia	0.417
31	Montserrat	0.431		Latvia	0.419		Tunisia	0.419
32	Philippines	0.438		Malaysia	0.420	-	Indonesia	0.419
33	Poland	0.438		Egypt	0.420		Egypt	0.419
34	Barbados	0.438		Azerbaijan, Republic of	0.421		Austria	0.422
35	Namibia	0.441	-	Denmark	0.423		Azerbaijan, Republic of	0.423
36	Portugal	0.442		Lithuania	0.425		Jamaica	0.428
37	Jamaica	0.448		Montserrat	0.425		Yemen, Republic of	0.430
38	Egypt	0.449		Poland	0.427		Montserrat	0.431
39	India	0.45		Philippines	0.429		Greece	0.432
40	San Marino	0.455	1	Thailand	0.432		Peru	0.435
41	São Tomé and Príncipe	0.46		Slovenia	0.433		Poland	0.439
42	Lithuania	0.46		Malawi	0.434		Denmark	0.439
43	Slovenia	0.462		Greece	0.434		Bhutan	0.439
44	Bahrain, Kingdom of	0.466		Kenya	0.439		Latvia	0.442
45	Hungary	0.467		Tunisia	0.441		Thailand	0.444
46	Romania	0.469		Portugal	0.443		Sierra Leone	0.445
47	Canada	0.469		Morocco	0.457		Namibia	0.447
48	Estonia	0.471		Hungary	0.459		Czech Republic	0.449
49	Sweden	0.475		Peru	0.459		Ukraine	0.452
50	Morocco	0.475		Bhutan	0.459		Slovak Republic	0.452
51	Slovak Republic	0.482		Canada	0.462		·	0.457
52	Thailand	0.485			0.462		Micronesia, Federated States of Sweden	0.457
		0.483	52	Sweden			Barbados	1
53 54	Bulgaria Viotnam	0.490		Slovak Republic	0.468			0.460
	Vietnam	0.506		Romania	0.472		Mozambique	0.462
55	Georgia			Namibia Estania	0.478		Congo, Republic of	0.462
56	Syrian Arab Republic	0.507		Estonia	0.482		Algeria	0.464
57	Tunisia	0.51		Georgia	0.484		Canada	0.471
58	Colombia	0.512		El Salvador	0.485		Honduras	0.471
59	St. Kitts and Nevis	0.53		San Marino	0.490		Morocco	0.476
60	El Salvador	0.532		Marshall Islands, Republic of	0.491		Solomon Islands	0.477
61	Honduras	0.534		Vietnam	0.494		Ghana	0.477
62	St. Vincent and the Grenadines	0.537		Honduras	0.495		Vietnam	0.478
63	Swaziland	0.539		Congo, Republic of	0.498		Kiribati	0.479
64	Peru	0.543	64	Colombia	0.507	64	Romania	0.488

Appendix 3.6. Full HHI RDI-based Country Ranking (Cont'd)

		0.00						
65	Ghana	0.553	65	Brazil	0.518		Marshall Islands, Republic of	0.490
66	Sierra Leone	0.554	66	Turkey	0.519		Brazil	0.493
67	Dominica	0.561	67	Cabo Verde	0.534	67	Estonia	0.495
68	Pakistan	0.573	68	Costa Rica	0.539	68	Seychelles	0.496
69	Benin	0.587	69	São Tomé and Príncipe	0.541	69	Costa Rica	0.500
70	Angola	0.588		Ghana	0.550		San Marino	0.502
71	•	0.59			0.558			0.503
	St. Lucia			Bulgaria			Angola	
72	Moldova	0.599		China, P.R.: Mainland	0.561		Swaziland	0.503
73	Lesotho	0.608		Côte d'Ivoire	0.563		Slovenia	0.505
74	Côte d'Ivoire	0.611	74	Sierra Leone	0.566	74	El Salvador	0.509
75	Ethiopia	0.613	75	Micronesia, Federated States of	0.575	75	China, P.R.: Mainland	0.520
76	Congo, Democratic Republic of	0.618	76	Congo, Democratic Republic of	0.576	76	Lithuania	0.523
77	Kuwait	0.619		St. Kitts and Nevis	0.580		São Tomé and Príncipe	0.527
78	Grenada	0.623		St. Vincent and the Grenadines	0.581		'	0.531
							Congo, Democratic Republic of	
79	Kenya	0.633		Armenia, Republic of	0.582		Burundi	0.532
80	Armenia, Republic of	0.633		Syrian Arab Republic	0.583		Cabo Verde	0.534
81	Congo, Republic of	0.634	81	Algeria	0.585	81	Pakistan	0.537
82	Dominican Republic	0.637	82	Guatemala	0.589	82	Hungary	0.537
83	Croatia	0.64	83	Croatia	0.593	83	Turkey	0.540
84	Togo	0.656		St. Lucia	0.596		Bangladesh	0.542
85	3	0.662	-		0.599		Guatemala	0.547
	Uganda			Serbia, Republic of				
86	Nepal	0.669		Grenada	0.605		Armenia, Republic of	0.548
87	Algeria	0.7		Swaziland	0.615	87	Uganda	0.553
88	Mauritius	0.701	88	Kuwait	0.620	88	Bulgaria	0.563
89	Jordan	0.706	89	Angola	0.620	89	St. Kitts and Nevis	0.580
90	Bangladesh	0.714	90	Benin	0.622	90	St. Vincent and the Grenadines	0.580
91	Guatemala	0.717		Uganda	0.624		Lesotho	0.582
92	Antigua and Barbuda	0.727		Dominica	0.626		Serbia, Republic of	0.592
							·	
93	Sri Lanka	0.728		Seychelles	0.631		Samoa	0.596
94	Bolivia	0.806		Mauritius	0.631		St. Lucia	0.600
95	Cambodia	0.819	95	Bangladesh	0.640	95	Côte d'Ivoire	0.604
96	Bahamas, The	0.914	96	Togo	0.653	96	Colombia	0.610
97	Maldives	0.92	97	Jordan	0.659	97	Croatia	0.613
98	Qatar	0.921	-	Moldova	0.664		Dominican Republic	0.615
99		0.984		Botswana	0.665		•	0.615
	Anguilla						Ethiopia	
100	Azerbaijan, Republic of	•••	100	Dominican Republic	0.669		Mauritius	0.615
101	Botswana		101	Paraguay	0.669		Grenada	0.625
102	Brazil		102	Ethiopia	0.672	102	Paraguay	0.640
103	Burkina Faso		103	Antigua and Barbuda	0.684	103	Dominica	0.641
104	Burundi		104	Nepal	0.688	104	Nepal	0.645
105	Cabo Verde		105	Lesotho	0.692		Botswana	0.650
106	China, P.R.: Mainland		106				Jordan	
		•••		Equatorial Guinea	0.721			0.655
107	Costa Rica		107	Sri Lanka	0.737		Kyrgyz Republic	0.661
108	Equatorial Guinea		108	Kyrgyz Republic	0.740		Benin	0.664
109	Indonesia		109	Bolivia	0.749	109	Cambodia	0.676
110	Kiribati		110	Cambodia	0.750	110	Moldova	0.676
111	Korea, Republic of		111	Bahrain, Kingdom of	0.796		Antigua and Barbuda	0.698
112	Kosovo, Republic of		112	West Bank and Gaza	0.871		Lebanon	0.728
113	Kyrgyz Republic		113	Maldives	0.871		Togo	0.726
		•••					_	
114	.ao People's Democratic Republic	•••	114	Bahamas, The	0.889		Kosovo, Republic of	0.737
115	Lebanon		115	Qatar	0.896		Sri Lanka	0.746
116	Malawi		116	Anguilla	0.988	116	Maldives	0.787
117	Marshall Islands, Republic of		117	Burkina Faso	0.896	117	West Bank and Gaza	0.846
118	Micronesia, Federated States of		118	Burundi		118	Bahamas, The	0.859
119	Mozambique		119	Kiribati		119	Bahrain, Kingdom of	0.868
	Nicaragua						•	
120	3	•••	120	Kosovo, Republic of		120	Qatar	0.887
121	Nigeria	•••	121	Lebanon		121	United Arab Emirates	0.920
122	Palau		122	Mozambique		122	Anguilla	0.974
123	Paraguay		123	Pakistan		123	Kuwait	0.977
124	Samoa		124	Samoa		124	Bolivia	
125	Serbia, Republic of		125	Singapore		125	Burkina Faso	
126	Seychelles		126	Solomon Islands		126	Equatorial Guinea	
	Singapore						•	
127	Singapore	•••	127	United Arab Emirates	•••	127	Syrian Arab Republic	

Sources: Authors' calculations

Appendix 3.7. Adjusted (accounting for non-tax revenue) RDI-based Country Ranking

	2000-2004			2005-2009			2010-2015	
Rank	Country	RDI	Rank	Country	RDI	Rank	Country	RDI
1	Japan	0.044		Japan	0.049	1	Japan	0.054
2	Switzerland	0.151	2	Switzerland	0.143	2	Switzerland	0.142
3	Israel	0.195	3	United Kingdom	0.153	3	Singapore	0.147
4	United Kingdom	0.197	4	Israel	0.169	4	United Kingdom	0.176
5	Netherlands	0.210	5	Korea, Republic of	0.209	5	Korea, Republic of	0.187
6	Luxembourg	0.238		Netherlands	0.225	6	Israel	0.196
7	Ukraine	0.241	7	Spain	0.230	7	Belgium	0.225
8	Finland	0.244	8	Belgium	0.243	8	Luxembourg	0.231
9	Spain	0.258	9	Luxembourg	0.250	9	Netherlands	0.237
10	Belgium	0.264	10	Finland	0.260	10	Spain	0.243
11	Iceland	0.323	11	Ukraine	0.264	11	Iceland	0.254
12	Malta	0.333	12	Indonesia	0.273	12	Malta	0.282
13	Morocco	0.339	13	Iceland	0.289	13	Finland	0.283
14	India	0.346	14	Malta	0.306	14	Indonesia	0.293
15	Czech Republic	0.347	15	India	0.313	15	India	0.309
16	Austria	0.352	16	Jamaica	0.335	16	Ukraine	0.315
17	Jamaica	0.364	17	Austria	0.336	17	Honduras	0.330
18	Philippines	0.379	18	Czech Republic	0.338	18	Peru	0.335
19	Honduras	0.382	19	Thailand	0.356	19	Egypt	0.339
20	San Marino	0.387	20	Honduras	0.359	20	Austria	0.346
21	Hungary	0.398	21	Peru	0.366	21	Georgia	0.365
22	Egypt	0.399	22	Egypt	0.368	22	Czech Republic	0.371
23	Thailand	0.405	23	Barbados	0.372	23	Montserrat	0.372
24	Estonia	0.407	24	Hungary	0.374	24	Thailand	0.374
25	Sweden	0.426	25	El Salvador	0.375	25	Morocco	0.376
26	Barbados	0.426	26	Morocco	0.386	26	Jamaica	0.376
27	Montserrat	0.435	27	Philippines	0.387	27	Tunisia	0.390
28	Bhutan	0.435	28	Montserrat	0.388	28	Costa Rica	0.391
29	São Tomé and Príncipe	0.448	29	Georgia	0.403	29	Philippines	0.395
30	St. Kitts and Nevis	0.451	30	Tunisia	0.404	30	China, P.R.: Mainland	0.395
31	Georgia	0.454		Estonia	0.404	31	Sweden	0.409
32	Peru	0.464	32	Sweden	0.411	32	Barbados	0.416
33	Moldova	0.471	33	China, P.R.: Mainland	0.444	33	El Salvador	0.418
34	St. Vincent and the Grenadines	0.495	34	Costa Rica	0.472	34	Estonia	0.426
35	Tunisia	0.506	35	Kenya	0.507	35	Solomon Islands	0.429
36	El Salvador	0.517	36	Armenia, Republic of	0.524	36	Lithuania	0.438
37	Angola	0.520	37	Croatia	0.551	37	Kenya	0.455
38	Dominica	0.527	38	Colombia	0.556	38	Hungary	0.460
39	Namibia	0.560	39	Angola	0.560	39	Bhutan	0.464
40	St. Lucia	0.598	40	Serbia, Republic of	0.568	40	Namibia	0.470
41	Armenia, Republic of	0.617	41	San Marino	0.572	41	Armenia, Republic of	0.477
42	Swaziland	0.629	42	Congo, Democratic Republic of	0.573	42	Ghana	0.481
43	Grenada	0.629	43	Namibia	0.582	43	Sierra Leone	0.523
44	Croatia	0.637	44	Azerbaijan, Republic of	0.589	44	São Tomé and Príncipe	0.526
45	Jordan	0.642	45	Bangladesh	0.600	45	Angola	0.530
46	Bangladesh	0.650	46	Moldova	0.605	46	Algeria	0.541
47	Colombia	0.651	47	St. Kitts and Nevis	0.614	47	Serbia, Republic of	0.544
48	Mauritius	0.658	48	St. Vincent and the Grenadines	0.616	48	Malawi	0.544
49	Nepal	0.697		São Tomé and Príncipe	0.617	49	Seychelles	0.551
50	Sierra Leone	0.747	50	Mauritius	0.625	50	Congo, Democratic Republic of	0.561
51	Lesotho	0.749		Jordan	0.635		Lesotho	0.563
52	Dominican Republic	0.750		Dominica	0.635		Croatia	0.569
53	Congo, Democratic Republic of	0.757		Marshall Islands, Republic of	0.635		St. Kitts and Nevis	0.578
54	Algeria	0.786		Malawi	0.648		St. Vincent and the Grenadines	0.578
55	Sri Lanka	0.787		Grenada	0.649		Samoa	0.594
56	Ghana	0.808		St. Lucia	0.658		Dominica	0.597
57	Togo	0.837		Ghana	0.697		Mauritius	0.602
58	Antigua and Barbuda	0.902		Bhutan	0.708		Bangladesh	0.603
59	Syrian Arab Republic	0.911		Cabo Verde	0.731		Paraguay	0.603
60	Guatemala	0.950		Paraguay	0.734		Azerbaijan, Republic of	0.607
61	Congo, Republic of	0.960		Seychelles	0.739		Swaziland	0.610
62	Cambodia	1.021		Algeria	0.740		Mozambique	0.610
		1.061	. ~ -	riigeria	J., TU	~-	ozamoique	5.510
63	Kenya	1.142		Swaziland	0.757	63	Colombia	0.612

Appendix 3.7. Adjusted (accounting for non-tax revenue) RDI-based Country Ranking (Cont'd)

65	Maldives	1.335		Botswana	0.784		Marshall Islands, Republic of	0.633
66	Bahrain, Kingdom of	1.340		Antigua and Barbuda	0.786		St. Lucia	0.661
67	Qatar	1.379	-	Lesotho	0.792		Jordan	0.679
68	Oman	1.686		Nepal	0.812		Grenada	0.693
69	Anguilla		69	Sierra Leone	0.814		Nepal	0.694
70	Kuwait	1.846		Guatemala	0.823		Moldova	0.694
71	Bahamas, The	1.888		Togo	0.888		Cabo Verde	0.694
72	Australia		72	Equatorial Guinea	0.897		Dominican Republic	0.709
73	Azerbaijan, Republic of		73	Kyrgyz Republic	0.901	-	Burundi	0.732
74	Benin		74	West Bank and Gaza	0.930		Antigua and Barbuda	0.732
75	Bolivia		75	Micronesia, Federated States of	0.946		Kyrgyz Republic	0.738
76	Botswana		76	Cambodia	0.975	76	Botswana	0.766
77	Brazil		77	Congo, Republic of	0.993	77	Guatemala	0.779
78	Bulgaria		78	Maldives	1.003		Togo	0.819
79	Burkina Faso		79	Uganda	1.013	79	Micronesia, Federated States of	0.839
80	Burundi		80	Syrian Arab Republic	1.022	80	Cambodia	0.894
81	Cabo Verde		81	Sri Lanka	1.031	81	Congo, Republic of	0.898
82	Canada		82	Qatar	1.358	82	Maldives	0.910
83	China, P.R.: Mainland		83	Oman	1.603	83	Uganda	0.925
84	Costa Rica		84	Bahamas, The	1.765	84	Sri Lanka	1.047
85	Cyprus		85	Anguilla	1.784		West Bank and Gaza	1.077
86	Côte d'Ivoire		86	Kuwait	2.013	86	Kiribati	1.086
87	Denmark		87	Bahrain, Kingdom of		87	Lebanon	1.150
88	Equatorial Guinea		88	Australia		88	Qatar	1.382
89	Ethiopia		89	Benin		89	United Arab Emirates	1.465
90	France		90	Bolivia		90	Anguilla	1.648
91	Germany		91	Brazil		91	Oman	1.682
92	Greece		92	Bulgaria		92	Bahamas, The	1.691
93	Indonesia		93	Burkina Faso		93	Bahrain, Kingdom of	2.927
94	Ireland		94	Burundi		94	Kuwait	3.383
95	Italy		95	Canada		95	Australia	
96	Kiribati		96	Cyprus		96	Benin	
97	Korea, Republic of		97	Côte d'Ivoire		97	Bolivia	
98	Kosovo, Republic of		98	Denmark		98	Brazil	
99	Kyrgyz Republic		99	Ethiopia		99	Bulgaria	
100	Latvia	•••	100	France		100	Burkina Faso	
101	Lebanon		100	Germany		100	Canada	
101			101	,		101		
102	Lithuania Malawi	•••	102	Greece	•••	102	Côto d'Ivoiro	
103	Malawi		103	Ireland		103	Côte d'Ivoire	
	Malaysia		-	Italy Kiribati			Denmark	
105	Marshall Islands, Republic of		105	Kiribati		105	Equatorial Guinea	
106	Micronesia, Federated States of	•••	106	Kosovo, Republic of	•••	106	Ethiopia	
107	Mozambique		107	Latvia		107	France	
108	Norway		108	Lebanon		108	Germany	
109	Pakistan		109	Lithuania		109	Greece	
110	Paraguay		110	Malaysia		110	Ireland	
111	Poland		111	Mozambique		111	Italy	
112	Portugal		112	Norway		112	Kosovo, Republic of	
113	Romania		113	Pakistan		113	Latvia	
114	Samoa		114	Poland		114	Malaysia	
115	Serbia, Republic of		115	Portugal		115	Norway	
116	Seychelles		116	Romania		116	Pakistan	
117	Singapore		117	Samoa		117	Poland	
118	Slovak Republic		118	Singapore		118	Portugal	
119	Slovenia		119	Slovak Republic		119	Romania	
120	Solomon Islands		120	Slovenia		120	Slovak Republic	
121	South Africa		121	Solomon Islands		121	Slovenia	
122	Turkey		122	South Africa		122	South Africa	
123	United Arab Emirates		123	Turkey		123	Syrian Arab Republic	
124	United States		124	United Arab Emirates		124	Turkey	
125	Vietnam		125	United States		125	United States	
126	West Bank and Gaza		126	Vietnam		126	Vietnam	
127	Yemen, Republic of		127	Yemen, Republic of		127	Yemen, Republic of	
·-·	. cc., cpablic of			. cc., . acpublic of	•••	/	. cc., . tepublic of	•••

Sources: Authors' calculations

Chapter 4. Access-for-all to Financial Services:
Non-resources Tax Revenue-harnessing
Opportunities in Developing Countries

4.1. Introduction

Over recent years, increasing attention has been paid to financial inclusion among both, policy-makers and academics considered as a key factor to achieve the 2030 Sustainable Development Goals (SDGs). Financial inclusion has become a priority of policy agenda in a number of economies across the globe, with more than 50 countries having adopted a National Financial Inclusion Strategy (Espinosa-Vega *et al.*, 2020).

Financial inclusion refers to access to and use of formal financial services by individuals and businesses (Sahay *et al.*, 2015a).⁶⁵ A broader definition considers, in addition to the access and use of financial services, further aspects including the quality and range, usefulness and appropriateness, affordability, sustainability, and awareness of financial services and products as well as the consumer protection (Grace *et al.*, 2014; SBS 2014; BSP 2015; World Bank 2018; Jahan *et al.*, 2019; and Espinosa-Vega *et al.*, 2020), making financial inclusion a multifaced concept. The measurement of financial inclusion also remains an important issue in the empirical literature given to its multidimensional aspect. While some components are particularly more easily capturable, other dimensions are not readily observable. ⁶⁶ For instance, the emergence of informal financial institutions deemed as "shadow banking" in most developing countries is often unrecorded yet provide non-negligible financial assistance to individuals and small businesses.

The consensus in the literature is that access-for-all to financial services is conducive to broader economic and development outcomes, though access to finance still constitutes a major constraint for business creation and expansion in developing countries (World Bank, 2014; Demirgüç-Kunt et al., 2015). Financial inclusion is crucial for inclusive and sustainable economic growth and non-access to formal financial services like bank account entails greater cash transactions is associated with higher transaction fees and financial risks (Lusardi, 2010). Greater financial inclusion positively affects the GDP, while reducing inequality in developing

⁶⁵ Financial inclusion is different from financial development. The latter occurs when financial instruments, markets, and intermediaries ameliorate – the effects of information, enforcement, and transactions costs and therefore do a correspondingly better job at providing the five financial functions (Levine, 2005) – though the former is a dimension of the latter (see *e.g.*, Sahay *et al.*, 2015). In addition, more financial development may allow greater access to financial services as emphasized in Rajan and Zingales (2003).

⁶⁶ See Espinosa-Vega et al. (2020) for a complete discussion.

and emerging (Dabla-Norris *et al.*,2015). Similarly, focusing on Latin America and the Caribbean (LAC) countries, Dabla-Norris *et al.* (2015) conclude that easing financial services access and relaxing collateral constraints helps reduce inequality and spur growth. Using a wide sample of 123 countries, Allen *et al.* (2015) highlight that financial inclusion is associated with stronger legal rights and more politically stable environments.

Micro-level and field experiment studies evidenced that microfinance branch expansion and access to credit facilities is conducive to business expansion and entrepreneurial activities development (Bruhn and Love, 2014; Angelucci, et al., 2015; Fareed et al., 2017). Similarly, Banerjee et al. (2010) show that access to microcredit increases small business investment and profits of preexisting businesses in India. Focusing on the Bosnia, Augsburg et al. (2015) also highlight that lower rejection of households' formal loans applications induces higher selfemployment, increases in inventory and an increase in the labor supply in the household's business. Similarly, in rural Kenya, Dupas and Robinson (2011) provide strong evidence that extending basic banking services (e.g., saving accounts) is associated to an increase in the size of market women businesses. In line with the disciplining effect of group lending, Attanasio et al., (2011) find a positive impact of access to group loans on entrepreneurship in Mongolia. Access to group loans increases the likelihood of owning an enterprise by 10 percent. Financial inclusion is found to be an important tool for empowering women and strengthening female decision-making power in developing countries. Relying on a randomized controlled trial, Ashraf et al. (2010) find that access to basic financial service such as saving accounts is associated to an increase in female decision-making power within the household in the Philippines.

The literature also asserted that financial inclusion positively affects households consumption as well as households income (Banerjee *et al.* 2010; Karlan and Zinman, 2010; Attanasio *et al.*, 2011; Dupas and Robinson, 2011; Bruhn and Love, 2014; Zhang and Posso, 2017). Access to financial services allows households to respond to income shocks by raising their current consumption (Bhattacharya and Patnaik, 2015), facilitates households consumption smoothing and softens output volatility cost (Mehrotra and Yetman, 2015). In addition, greater access to financial services encourages households saving. Aportela (1999), based on natural experiment shows that the financial inclusion increased the average saving rate of households by around

5 percentage points and this effect was even higher for the poorest households in Mexico. Furthermore, access to financial service favors human capital development and increases jobs opportunities (Demirgüç-Kunt *et al.*, 2008). For instance, De Gregorio (1996) on an overlapping generations model with endogenous growth, highlights that access to financial services is associated with an increase in human capital accumulation and growth in OECD and developing countries.

Subsequent studies explored the impact of access to financial services on the level of poverty (Burgess *et al.*, 2005; Burgess and Pande, 2005; Honohan, 2004a,b; Honohan, 2005, 2006; Karlan and Zinman, 2010; Kiendrebeogo and Minea, 2013; Bruhn and Love, 2014; Banerjee *et al.*, 2015; Rewilak, 2017) and find that access to basic financial services is associated with a decrease in the poverty rates. For instance, Coulibaly and Yogo (2018) recently evidenced that improving financial outreach through additional bank branches reduces the number of poor workers in developing countries.

Nevertheless, parallel to this literature, some studies have documented that greater access to financial services without proper financial supervision might be harmful to economic outcomes and result into financial distress (Rajan, 2010; Han and Melecky, 2013; Sahay *et al.*, 2015). For instance, high financial inclusion combined with a boom in access to credit is associated to a deterioration in credit quality and thereby leading to financial risks (Mehrotra and Yetman, 2015). In addition, Dabla-Norris *et al.* (2015) analyzing factors constraining firms to access to finance find that greater access to credit could result in bank instability by increasing non-performing loans.

Although Čihák and Sahay (2018) postulate that inclusive financial systems can increase the effectiveness of fiscal policy by broadening the tax base, studies exploring the potential effect of accessing to financial services on government tax revenue are very scarce (Oz-Yalaman, 2019). Also, studies particularly focusing in developing countries and using non-resources tax revenue is non-existent. To the best of our knowledge, our paper is therefore the first to provide a strong and convincing evidence on the nexus between financial inclusion and non-resources tax ratio in developing countries. Our contribution to the literature relies on the use

of comparable⁶⁷ tax revenue ratio excluding natural resources revenue. As underscored in Caldeira et al. (2020), distinguishing resource from non-resource revenue is highly relevant to understand tax capacity in developing countries and the literature has well-documented a crowding-out effect between resources revenue and non-resource tax revenue (Bornhorst et al., 2009; Crivelli and Gupta, 2014; James, 2015 among others). In addition, unlike the empirical method employed in Oz-Yalaman (2019), we adopted a dynamic specification to account for the inertia in government tax revenue.

Using a sample of 62 developing countries over the period 2004-2017 and drawing on the dynamic generalized method of moments (GMM) to solve the endogeneity and any reverse causality issue, the chapter shows that greater access to financial services captured by the number of ATMs per 100,000 adults increases government non-resources tax-to-GDP ratio. Looking at the tax revenue structure, the results show that indirect taxes revenue accounts the most sizeable positive effect of increased penetration of ATMs on tax revenue. Exploring the channels through which financial inclusion influences non-resource tax ratio, our empirical results highlight that the positive effect of greater access to financial services mainly operates through private consumption and business expansion. Our results survived to a battery of robustness exercises including (1) adding more control variable namely the level of education, inflation, the population size, external aid received, domestic financial sector development, remittances inflows and the tax structure, (2) the use of alternative financial inclusion measures to capture the multifaceted aspect of our interest variable and (3) using alternative tax data source.

This chapter provides insights to countries that have implemented or are in the process of implementing financial inclusion policies, on tax revenue-harnessing opportunities from access-for-all financial services.

The remainder of the chapter is structured as follows: the second section describes the econometric methodology and introduces the dataset with some stylized facts. Section 3

⁶⁷ Oz-Yalaman (2019) explored the nexus between financial inclusion and tax revenue but using different sources of total tax revenue and tax subcomponents. This entails important shortcomings since the datasets are not strictly comparable (Sahay et al., 2015).

presents the baseline results from the empirical specification and considers some robustness checks. Section 4 provides concluding remarks and draws policy implications.

4.2. Empirical Methodology and Data

4.2.1. Econometric Model

The following dynamic panel model that captures the impact of financial inclusion on non-resources tax revenue was estimated:

$$NRTax_{i,t} = \alpha + \beta NRTax_{i,t-1} + \psi FInc_{i,t} + Z_{i,t}\delta + \lambda_i + \zeta_t + \varepsilon_{i,t}$$

$$\tag{4.1}$$

 $NRTax_{i,t}$ is the natural logarithm of non-resource tax-to-GDP ratio for country i at time t. We included the one-period lagged value of the dependent variable $-NRTax_{i,t}$ because of the inertia in the total tax revenue. $FInc_{i,t}$ is the financial inclusion indicator and $\mathbf{Z}_{i,t}$ is a set of variables that explain the government tax revenue ratio. λ_i and ζ_t denote time-invariant country-level characteristics and time-varying factors, respectively that could potentially affect the tax ratio. The last term, ε_{it} is an idiosyncratic disturbance.

Taking stock of previous literature on the principal determinants of the tax share in GDP, the vector $\mathbf{Z}_{i,t}$ includes *inter alia* the level of development, the sectoral composition of value -added (*i.e.*, agriculture and natural resources), the trade openness and the quality of institutions. The **real GDP per capita** is commonly used to capture countries' overall level of development. Countries' tax capacity is intrinsically related to their level of development (Lotz and Morss, 1967; Tanzi 1983; Pessino and Fenochietto, 2010; Fenochietto and Pessino, 2013; Crivelli and Gupta, 2014). High-income countries are expected to raise more tax revenue than developing countries due to the more efficient and strong tax administration, higher degree of economic and institutional sophistication. To capture the non-linearity effect of the level of development and tax capacity, we include the squared of this variable in the specification.

Trade openness refers to the volume of international trade in the GDP. Substantial increase in trade volume makes it more amenable to taxation through domestic consumption and corporate profits (Chelliah *et al.*, 1975; Leuthold, 1991; Tanzi, 1992; Stotsky and WoldeMariam,

1997; Stotsky and WoldeMariam, 2006; Pessino and Fenochietto 2010; Gnangnon and Brun, 2018).

The effect of **natural resources rents** on tax revenue ratio is widely evidenced in the literature but remains controversial. While pioneering studies evidenced a positive effect of natural resource rent on tax revenue (Cheliiah et al., 1975 and Tanzi, 1992), recent resource curse literature highlights a negative association between natural resources rents and government tax revenue, suggesting a *crowding-out effect* (Sachs and Warner, 2001; Eltony, 2002; Bornhorst *et* al., 2009; McGuirk, 2013; Crivelli and Gupta, 2014; James, 2015; Belinga *et al*. 2017). Therefore, the effect of natural resources rents on tax revenue is *a priori* ambiguous.

The share of **agriculture in the GDP** is found to be negatively associated with non-resource tax ratio (Cheliiah *et al.*, 1975; and Tanzi, 1992; Stotsky and WoldeMariam, 2006). Developing countries are still featured by large shares of the subsistence agricultural sector which is not generating taxable surpluses. In addition, this sector is more often subject to tax exemptions considered as sector providing food for subsistence (Stotsky and WoldeMariam, 2006).

We proxy the **quality of institutions** by the polity2 index assessing the degree of democracy. High and strong economic and political institutions are expected to promote tax administrations allowing more tax revenue collection (Davoodi and Grigorian, 2007); Gupta, 2007; Gordon and Li, 2009; Clist and Morrissey, 2011; Fenochietto and Pessino, 2013; Feger and Asafu-Adjaye, 2014), while the lower quality of institutions portrayed by higher corruption is a threat for tax revenue collection as it affects tax administration and tax officers and occasioning tax evasion.

Equation (4.1) is a dynamic specification since the non-resource tax-to-GDP ratio at period t depends on its past realizations. Thus, relying on classical linear Ordinary Least Squares (OLS) estimator would lead to inconsistent and biased results (Nickel, 1981; Wooldridge, 2002). The appropriate estimator for dynamic panel data models appears to be the popular Generalized Method of Moments (GMM). The GMM estimator is designed for dynamic specifications with

"small-T, large-N"⁶⁸ panels and allows to tackle potential issues of endogeneity, simultaneous and omitted variables bias. Hence, this estimator will allow, not only to correct the possible endogeneity of our interest variable –financial access– but also to correct for endogeneity of all right-hand side variables by using the lagged values as instruments (one to two lags). Our analysis specifically relied on the system-GMM proposed by Blundell and Bond (1998) with the two-step estimator. However, the validity of the GMM estimation relies on the main assumption that instruments are exogenous (Roodman, 2009). Therefore, we resort to Hansen's test for over-identifying restrictions to check the validity of the instruments. Another condition that validates the GMM estimator is the absence of second-order serial correlation in the residuals in difference. Accordingly, the Arellano-Bond's test is used to check that condition.

4.2.2. Data and Some Stylized Facts

The study is conducted on a sample of 62 developing countries over the period 2004-2018, based on data availability.⁶⁹ The dataset consists in a yearly unbalanced panel because of missing observations and is compiled from various sources including the World Bank' Worldwide Development Indicators (WDI), the International Monetary Fund's World Economic Outlook (WEO), Penn World Tables (PWT9.1) and the Polity4 project.⁷⁰

Thought there are currently several of available sources of cross-country tax revenue data including the World Bank, the Organization for Economic Co-operation and Development (OECD), and the Comisión Económica para América Latina y el Caribe (CEPAL), tax revenue data used in this study come from the most recent ICTD/UNU-WIDER, Government Revenue Dataset⁷¹ (henceforth ICTD dataset). This dataset combines several major international databases, as well as drawing on data compiled from all available International Monetary Fund

⁶⁸ Meaning few time periods and many individuals, which is the case with our sample.

⁶⁹ The developing countries category considered in this paper refers to the World Bank income classification, hence including low-income and middle-income countries. The complete country list by region is provided in Table A1 of Appendices.

⁷⁰ See Table A2 for complete definition and sources of variables.

⁷¹ The database is available at https://www.ictd.ac/dataset/grd/.

(IMF) Article IV reports (Prichard *et al.*, 2014). ICTD dataset has the advantage to be available for a large number of developing countries which is the focus of this study. More importantly, unlike alternative databases, ICTD dataset has the particularity to exclude natural resource revenue tax revenue⁷², then providing a non-resource tax revenue data. Many studies in the literature show that natural resource rents have crowded out incomes from taxation (Bornhorst *et al.* 2009; Ossowski and Gonzáles-Castillo, 2012; McGuirk, 2013; Thomas and Trevino, 2013; Crivelli and Gupta, 2014). In addition, distinguishing revenue from non-resource revenue is of particular importance when it comes to analyze countries' tax effort (Caldeira *et al.*, 2020). A competing rich non-resource tax revenue dataset was developed by Mansour (2010) covering 1980-2010 and recently updated to 2015 (see Caldeira *et al.*,2020). However, this database only focuses on 42 Sub-Saharan African countries. We, therefore, relied on ICTD dataset for coverage purpose. Tax data used in this paper cover six tax series namely: (i) total tax revenue; (ii) indirect taxes; (ii) direct taxes; (iv) income taxes; (v) taxes on goods and services, and (vi) value-added tax, all expressed as percentage of GDP.

Data on financial inclusion are extracted from the IMF's Financial Access Survey database ⁷³ and include 8 indicators of financial access: (i) the number of automated teller machines (ATMs) per 100,000 adults; (ii) the number of commercial bank branches per 100,000 adults; (iii) the number of loan accounts with commercial banks per 1,000 adults; (iv) number of depositors with commercial banks per 1,000 adults; (v) number of credit unions and credit cooperatives; (vi) outstanding deposits with commercial banks; (vii) number of depositors with commercial banks, and (viii) loan accounts with commercial banks. Higher values of these indicators suggest a greater degree of financial access.

Focusing on the number of ATMs per 100, 000 adults, Figure 4.1 shows an upward trend in developing countries, suggesting that financial access is advancing. More precisely, the number of ATMs/ 100,000 adults recorded considerable progress moving from 13 ATMs per 100,000 adults in 2004 to 45 ATMs in 2017, on average. However, this remains low compared to developed countries with 21 and 63 ATMs for 100,000 people in 2004 and 2017, respectively.

⁷² See Prichard et al. (2014) and Caldeira et al. (2020) for further discussion.

⁷³ Data available at https://data.imf.org/?sk=E5DCAB7E-A5CA-4892-A6EA-598B5463A34C.

ATMs / 100,0000

ATMS /

Figure 4.1. Financial Inclusion Over Time (Average Number of ATMs)

Source: Authors' calculations using IMF-FAS Database, 2019

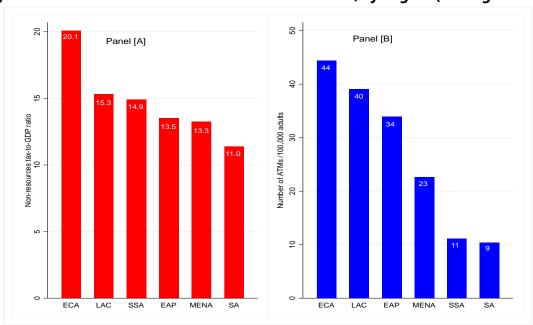


Figure 4.2. Non-resource Tax-to-GDP Ratio and ATMs, by Region (Average Values)

Source: Authors' calculations using ICTD/UNU-WIDER GRD, 2019 and IMF-FAS Database, 2019. Note: ECA= Europe and Central Asia; LAC= Latin America & Caribbean; SSA= Sub-Saharan Africa; EAP: East Asia & Pacific; MENA=Middle East and North Africa; SA= South Asia.

Figure 4.2 depicts countries' tax collection performance measured by the non-resource tax-to-GDP ratio as well as the level of financial access proxied by the number of ATMs per 100,000 adults across regions (Panel [A] and [B], respectively). It emerges that Europe and Central Asia (ECA) and Latin America and Caribbean (LAC) countries have the higher level of financial access in the sample, with on average 44 and 40 ATMs for 100,000 adults, respectively. At the same

time, those countries appear to be the top performers in terms of tax revenue collection with a non-resource tax-to-GDP ratio of 20.1 and 15.3 per cent on average, respectively. In contrast, it comes out that the level of accessing to financial services is very low in South Asia (SA) and Sub-Saharan Africa (SSA) countries with on average, 9 and 11 ATMs for 100,000 adults, respectively. SA is the lower performer region of the sample in terms of tax revenue raising, with an average tax-to-GDP ratio of 11.9. SSA countries have been making tremendous efforts to collect tax revenue (14.9 percent of GDP on average) over recent years as a result of important tax policy and administration reforms (Mansour and Rota-Graziosi, 2013; Ebeke *et al.*, 2016) but still have room for greater tax collection. For instance, Caldeira *et al.*, (2020) stressed that SSA countries could raise up to 22.75 percent of GDP in non-resource taxes if they fully exploited their tax potential.

In figure 4.3 we provide the correlation between to financial access indicators – the number of ATMs and branches per 100,000 adults – and the total non-resource tax-to-GDP ratio. It clearly appears that more access to financial services is associated with greater tax revenue mobilization.

Figure 4.3. Correlation Between the Number of ATMs and Branches and Non-resource Tax Ratio

Source: Authors' calculations using ICTD/UNU-WIDER GRD, 2019 and IMF-FAS Database, 2019.

4.2. Results

4.2.1. Baseline results

Table 4.1 reports the system GMM-based estimates of the effect of financial inclusion on the non-resource tax-to-GDP ratio in developing countries as specified in equation (4.1). Column [1] shows the results for total non-resources tax ratio, while remaining columns (Columns [2]-[6]) display the results for different tax revenue subcomponents as mentioned above.

Resorting to the number of ATMs as a proxy for access to financial services, our empirical results evidence a positive relationship between financial inclusion and non-resources tax revenue. Indeed, the coefficient associated with financial inclusion is positive and strongly significant at 1 percent level for total non-resource tax (Column [1]). Thus, financial inclusion increases tax revenue mobilization. More precisely, a 1 percentage increase in the number of ATMs leads to an unconditional rise in the non-resource tax revenue ratio by 0.42 percent. Besides, statistical tests do validate our econometric method and the significance (1 percent) in the coefficients associated with the lagged dependent variable underscore an inertia effect which legitimates the choice of dynamic panel specification. The *p-values* of the Hansen test and the Arellano–Bond tests for serial correlation (AR (1) and AR (2)) are reported at the bottom of the table and confirm all the validity of our econometric approach.⁷⁴

Regarding, the composition of tax revenue, the results also support a positive relationship between financial access and all subcomponents of total tax revenue (Column [2] -[6]). More specifically, the coefficient associated with financial inclusion is more sizeable for indirect taxes (Column [2]) compared to the one for direct taxes (Column [3]). This might suggest that more access to financial services allows for greater total tax revenue mobilization through increased consumption and thereby more consumption taxes to collect. This is confirmed by the positive and statistically positive coefficient of financial inclusion on taxes on goods and services (Column [5]), as well as on value-added taxes (Column [6]).

⁷⁴ See Roodman (2009) for a complete discussion on GMM method.

Turning to the control variables, the results indicate that the level of development measured by the real GDP per capita and the quality of the institution appears to be relevant determinants of non-resources tax ratio in developing countries and are positively and significantly associated with tax ratio. These findings are consistent with previous evidence (Pessino and Fenochietto, 2010; Fenochietto and Pessino, 2013; Crivelli and Gupta, 2014; Davoodi and Grigorian, 2007); Gupta, 2007; Gordon and Li, 2009; Clist and Morrissey, 2011; Fenochietto and Pessino, 2013; Feger and Asafu-Adjaye, 2014) that strong and good institutional quality is favorable to greater tax revenue collection, and countries' tax capacity is positively related to their level of development. The results also confirm our hypothesis of non-linearity between the level of development and the capacity captured by the negative a significant coefficient associated with the squared of real GDP per capita.

Table 4.1. Baseline Results

Dependent variable: Non-resource tax (in % GDP)						
	(1)	(2)	(3)	(4)	(5)	(6)
	Tot. Tax	Indirect	Direct	Income	Gds & Serv.	VAT
Dep. variable ₍₋₁₎	0.88087***	0.95022***	0.89339***	0.86664***	0.89699***	0.85310***
	(0.040)	(0.029)	(0.046)	(0.028)	(0.063)	(0.049)
ATMs /100,000 adults (Log)	0.41695***	0.21179*	0.13574**	0.21482**	0.20143**	0.14093**
	(0.111)	(0.112)	(0.069)	(0.100)	(0.089)	(0.068)
Real GDP_pc	0.00023**	0.00008	0.00017**	0.00020**	0.00018**	0.00007
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Squared real GDP_pc (Log)	-0.09120**	-0.04770**	-0.05683**	-0.07897***	-0.08599***	-0.03524
	(0.039)	(0.024)	(0.028)	(0.029)	(0.028)	(0.027)
Log total natural resources rents /GDP	0.01585	0.05669	0.13293**	0.15840***	-0.04089	0.02269
	(0.069)	(0.044)	(0.061)	(0.049)	(0.053)	(0.033)
Trade openness	0.90547	0.68684**	0.63542*	0.46477*	0.12896	0.30823
	(0.566)	(0.326)	(0.335)	(0.269)	(0.356)	(0.316)
Agriculture value added / GDP	-0.01669	-0.03456	-0.02782	-0.05122***	-0.04956	-0.00905
	(0.033)	(0.025)	(0.028)	(0.019)	(0.031)	(0.027)
Polity2 index	0.03620***	0.01396	0.02366	0.01393*	0.02252**	0.03557**
	(0.013)	(0.011)	(0.024)	(800.0)	(0.009)	(0.015)
Constant	0.00000	0.00000	0.00000	3.19583	0.00000	0.00000
	(0.000)	(0.000)	(0.000)	(2.053)	(0.000)	(0.000)
Nb. of observations	566	534	494	522	548	478
Countries	61	58	55	59	58	54
AR(1) <i>p-value</i>	0.000	0.001	0.000	0.003	0.000	0.001
AR(2) p-value	0.826	0.267	0.443	0.552	0.710	0.852
Hansen OID (p-value)	0.226	0.187	0.653	0.041	0.443	0.120
Nb. of instruments	35	38	30	41	27	26
Year FE	YES	YES	YES	YES	YES	YES

^{*, ***,} and **** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets. Note: The number of instruments is strongly limited-starting with the second lag of the dependent variable and the first lag of the control variables- to avoid the over-fitting problem. In all specifications, the null hypothesis for lack of first-order (AR (1)) serial correlation in the first-differenced error terms is rejected, while not rejected for the second-order (AR (2)). In addition, the robust (to heteroskedasticity and autocorrelation) Hansen's p-value validates the over-identification restrictions. All of these statistical tests validate the econometric method, and the lagged variables can be safely used as instruments. This applies to all regressions in the chapter.

In line with previous findings (Tanzi, 1992; Stotsky and WoldeMariam, 2006; Bornhorst *et al.*, 2009; Pessino and Fenochietto, 2010; McGuirk, 2013; Crivelli and Gupta, 2014), natural resources rents, trade openness and agriculture value-added are also determining factors of non-resources tax subcomponents (columns [2], [3] an [4]), while they appear to be non-significant on the total tax ratio.

4.2.2. Transmission channel

This section explores the main channels through which financial inclusion influences non-resource tax ratio. As stressed above, financial inclusion leads to increased household consumption and business development. Relying on this literature, we expect financial inclusion to affect tax revenue through increased business development and private consumption. Easy access to financial services allows both households and firms (e.g., SMEs) with credit facilities to finance productive investments and increase their consumption. That in turn generates, both, income⁷⁵ and consumption tax opportunities for government. Besides, financial inclusion would positively affect tax revenue through business development based on the rational that business expansion is associated with job creation⁷⁶ (i.e., decrease in the unemployment rate) and income generation for households, thereby income taxes to collect. We proxy the households' consumption by the private consumption per capita, while the business development induced-effect of financial inclusion is captured through the unemployment rate. However, since these transmission channels might be direct or indirect, we proceeded in two steps: first, we estimate the effects of financial access on each channel, then we estimate the effects of each variable on the total non-resource tax ratio.⁷⁷

_

⁷⁵ Taxes on income, profits, & capital gains: corporations.

⁷⁶ Teima *et al.* (2010) highlighted that SMEs contribute up to 45 percent of employment in developing countries. It is also worth mentioning that the employment effect from greater access to financial services could be dived into two sub-effects: (i) new job creation and (ii) an increase in labor demand from existing businesses. However, data unavailability on such a variables does not allow to distinguish these specific effects in the analysis that could be of policy-relevant recommendations.

⁷⁷ An alternative popular approach in the literature to test whether the effect of financial inclusion on non-resource tax-to-GDP ratio would transmit through the considered channels, consists to run our baseline regression interacting the financial inclusion indicator with each transmission channel (see *e.g.*, Caballero, 2016; Compaore *et al.*, 2020 among other). If the coefficients associated with financial inclusion indicator works out to be non-significant when the interactive terms and the transmission channels are included, we then conclude that the effect financial

The first step estimation results are reported in Tables 4.2. The results show that more access to financial services is associated with greater private consumption (column [1]) and a lower unemployment rate (column [2]), confirming previous findings.

Table 4.2. Transmission Channels

	Private consumption_pc	Unemployment
	(1)	(2)
ATMs /100,000 adults (Log) ₍₋₁₎	0.09155***	-3.07251*
	(0.018)	(1.638)
Debt to GDP ratio ₍₋₁₎	-0.00007	0.00961
	(0.001)	(0.026)
Real GDP_pc ₍₋₁₎	0.00012***	0.00164
	(0.000)	(0.001)
GDP growth ₍₋₁₎	0.00125	0.01854
	(0.001)	(0.041)
Gross fixed capital formation / $GDP_{(-1)}$	-0.00136	-0.34860**
	(0.002)	(0.138)
GINI index ₍₋₁₎	-0.00117	-0.09378
	(0.003)	(0.108)
Trade openness ₍₋₁₎	-0.00325	-5.84236*
	(0.052)	(3.184)
Log inflation ₍₋₁₎	-0.00820***	0.02292
	(0.002)	(0.124)
Human capital index ₍₋₁₎	0.04621	-3.31473
	(0.118)	(6.625)
Constant	6.97473***	52.15080*
	(0.347)	(27.423)
Observations	204	220
Countries	33	39
R-squared	0.814	0.396

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Robust standard errors are reported in brackets. Note: fixed effects are included.

In Table 4.3, we report the results of the effect of the transmission channels on our tax variable. In line with our main hypothesis, households private consumption is positively and significantly associated with total non-resources tax ratio, as well as different tax subcomponents (Panel [A], columns [1]-[6]). Greater private consumption means an increase in consumption tax revenue such as the VAT. It is worth noting that value-added tax has become one of the most important tools of revenue mobilization in the developing world about one-quarter of total tax revenue

inclusion on tax revenue can be assumed to operate through private consumption and job creation as a result of business development and expansion. Based on this approach, the results also confirm our hypothesis.

is raised through value-added tax. (Keen and Lockwood, 2006, 2016, Gerard and Naritomi, 2018). The value-added tax also presents the advantage to be less distortionary in addition to its *self-enforcing* properties (Kopczuk and Slemrod, 2006).

In Panel [B] of Table 3, we present the results using the unemployment rate. It emerges that the unemployment rate is negatively linked to total tax ratio (column [1]), as well as income taxes and value-added tax (columns [1] and [6], respectively). Financial inclusion reduces unemployment by increasing business and enhancing income-generating activities, hence providing opportunities to collect income taxes both on individuals and corporates.

Overall, our results confirm that financial inclusion is conducive to higher tax revenue collection through private consumption and business expansion.

Table 4.3. Effects of Transmission Channel Variables on Tax Revenue Variable

Dependent variable: Non-resource tax ratio	Tot. Tax	Indirect	Direct	Income	Goods & Serv.	VAT
	(1)	(2)	(3)	(4)	(5)	(6)
		Pa	anel [A]: Priv	ate consun	nption	
Private consumption_pc (log)	4.47171***	2.23892***	2.69600***	1.93726***	2.15500***	1.57607**
	(1.061)	(0.807)	(0.474)	(0.610)	(0.750)	(0.665)
Constant	-17.83325**	-6.19513	-14.90227***	-8.93711*	-7.90796	-6.69822
	(7.979)	(6.065)	(3.576)	(4.588)	(5.649)	(4.996)
Observations	416	383	364	381	384	326
Countries	37	35	35	36	35	32
R-squared	0.180	0.073	0.272	0.109	0.110	0.133
			Panel [A]: U	Inemploym	ent	
Unemployment	-0.05045*	-0.01662	-0.02540	-0.05030**	0.00001	-0.02348*
	(0.025)	(0.021)	(0.019)	(0.024)	(0.018)	(0.013)
Constant	16.60980***	11.10105**	5.66047***	6.12380***	8.85711***	6.10331***
	(0.205)	(0.174)	(0.156)	(0.197)	(0.149)	(0.107)
Observations	443	416	385	416	426	381
Countries	56	55	51	55	56	53
R-squared	0.015	0.003	0.011	0.023	0.000	0.013

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Robust standard errors are reported in brackets. Note: fixed effects are included

4.2.3. Robustness Checks

In this section, we undertake three robustness exercises to check the validity of our findings. First, we test the sensitivity of the results from the baseline specification to additional control

variables, including the level of education, inflation, the population size, external aid received, domestic financial sector development, remittances inflows and the tax structure.⁷⁸

A higher level of education is expected to increase tax compliance. Similarly, a large population, a well-functioning financial sector and remittances flows received are positively associated with tax ratio, while higher inflation episodes and external assistance are negatively linked to tax collection capacity.

Results are reported in Table 4.4 and are similar to the baseline findings. The coefficients associated to the population size, financial sector development and tax diversification index are positive and significant (columns [3], [5] and [7], respectively). A large population constitutes a potential for tax collection. In addition, a well-developed financial sector and greater access to credit allow individuals and corporates to finance profitable projects, which in turn favor tax contribution. Having a diversified tax base is associated with greater tax revenue collection. The results also show that inflation harms tax revenue mobilization (column [4]), corroborating the *Tanzi effect*.

⁷⁸ These variables are considered in the literature as possible determinants of tax revenue (see *e.g.*, Tanzi, 1977, Gupta *et al.* 2014, Gordon and Li, 2009, Pessino and Fenochietto, 2010, Clist and Morrissey 2011, Ebeke, 2011, Benedek *et al.* 2012, Asafu-Adjaye (2014), and Compaore *et al.*, 2020 among others).

Table 4.4. Robustness Check: Adding more Control Variables

Dependent variable: Total non-resource tax-to-GDP ratio							
•	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dep. variable ₍₋₁₎	0.83851***	0.85198***	0.84004***	0.84156***	0.92508***	0.89801***	0.96098***
	(0.065)	(0.068)	(0.053)	(0.066)	(0.044)	(0.047)	(0.049)
ATMs /100,000 adults (Log)	0.37651**	0.35622**	0.41247***	0.37169***	0.40795***	0.43021***	0.67880**
	(0.161)	(0.163)	(0.115)	(0.132)	(0.140)	(0.158)	(0.327)
Human capital index	0.26274	0.06969	0.19853	0.00372	-0.34542	-0.34912	-1.07822
	(0.565)	(0.649)	(0.437)	(0.569)	(0.425)	(0.423)	(0.704)
Log inflation		-0.01366	-0.00528	-0.01874	0.00513	0.01492	0.00361
		(0.028)	(0.027)	(0.032)	(0.021)	(0.020)	(0.034)
Log total population			0.18675*	0.15694	-0.27982	-0.25708	0.13004
			(0.107)	(0.169)	(0.174)	(0.184)	(0.520)
Log Net ODA received_pc				-0.27082*	-0.09633	-0.04720	0.07013
				(0.148)	(0.082)	(0.090)	(0.277)
Financial markets efficiency					1.56812***	1.39023**	1.60892**
					(0.567)	(0.639)	(0.753)
Remittances (% GDP)						0.00880	-0.01429
						(0.022)	(0.029)
Tax diversification							2.17651*
							(1.121)
Control variables	YES						
Nb. of observations	460	454	454	431	431	424	248
Countries	55	55	55	54	54	53	34
AR(1) p-value	0.000	0.000	0.000	0.000	0.000	0.000	0.025
AR(2) p-value	0.930	0.774	0.978	0.743	0.440	0.263	0.866
Hansen OID (p-value)	0.419	0.183	0.534	0.584	0.370	0.144	0.177
Nb. of instruments	26	26	36	32	35	37	37
Year FE	YES						
	_						

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets. Note:: Constant terms, as well as vector X variables are included but not reported for space purpose.

Second, up to now, we used the number of ATMs per 100,000 adults to measure financial inclusion in developing countries. However, financial inclusion is a multifaceted concept which encompasses various dimensions (Espinosa-Vega *et al.*, 2020). In addition, the access to banking services widely varies across countries and is changing over time. For instance, developing countries are increasingly shifting from traditional banking toward digital banking and finance with an important use of mobile money. Hence, relying on traditional banking may poorly capture the real state of financial inclusion.⁷⁹ Furthermore, as stressed in Coulibaly and Yogo (2019), ATMs as well as bank branches in developing countries may be unevenly distributed within countries and tend to be more often concentrated in large cities (Guerineau and Jacolin, 2014). Hence, people in rural areas will not get access to financial services. Finally, our baseline financial inclusion measure does take into account microfinance institutions

⁻

 $^{^{79}}$ We point out this fact, but data scarcity does not allow us include a financial inclusion indicator capturing mobile and digital banking (e.g., the number of registered and active mobile money agent outlets).

(MFIs), credit unions or financial cooperatives which play a pivotal role in providing financial services in developing countries. We, therefore, paid particular attention to these shortcomings by considering several alternative indicators to capture financial access in a more comprehensive way. The results are reported in Appendix 4.4 and overall, they support those presented in Table 4.1.

We finally exploit an alternative data source to test the validity of our findings. As mentioned above, several tax data sources have been used in the literature. In this robustness exercise, we use the IMF's GFS tax database which also provides detailed classification of government's tax revenues. Appendix 4.5 of appendices reports the estimation results. The results show that the coefficients associated financial inclusion are positive and strongly significant at the 1 percent level for total tax revenue (column [1]) and some tax subcomponents (columns [3], [4] and [6]). Therefore, our baseline findings remain valid.

4.3. Conclusion

The present chapter adds to the literature on tax revenue mobilization, by empirically examining the relationship between access to financial services and non-resources tax-to-GDP ratio in developing countries. Relying on the popular system-GMM estimator of Blundell and Bond (1998), this chapter is the first, to the best of our knowledge, to take into account the inertia in the tax revenue ratio and the possible endogeneity of financial inclusion as well all control variables. Based on a panel data of 62 developing countries over the period 2004-2017, the chapter finds that financial inclusion is positively and significantly associated with non-resources tax revenue. Exploring the effect on the tax structure, the results show that access to financial services has a more sizeable effect on indirect taxes than the rest of total tax subcomponents. The chapter also provides empirical evidence that financial inclusion is inducive to higher tax revenue, mainly through increased private consumption and business expansion. Furthermore, in line with previous evidence, our results show that the level of development as well as the quality of institutions are important determinants of tax ratio and are positively associated with tax revenue performance in developing countries. However, the

relationship between the level of overall development turns out to be non-linear, suggesting the existence of a tipping point.

In terms of policy recommendations, our study concurs with previous findings and call for an improved and greater access to financial services. In view of the pressing financing needs to finance structural investments in the developing world, our paper provides insights to countries that have implemented or are in the process of implementing financial inclusion policies, on tax resources harnessing opportunities from better access to financial services. In addition, in the current particular context of coronavirus (Covid-19) pandemic causing severe economic despair across the world and requiring important financial resources for a timely and appropriate response, unlocking access to financial services will help to better cope with the income shock and to smooth households consumption.

Appendices

Appendix 4.1. Country List

Region	Country	Region	Country
	Argentina		Albania
	Bolivia		Armenia
	Brazil		Azerbaijan
	Chile		Belarus
	Colombia		Georgia
	Costa Rica		Kazakhstan
	Dominican Republic		Kyrgyz Republic
	Ecuador	ECA	Macedonia
LAC	El Salvador		Moldova
LAC	Guatemala		Montenegro
	Honduras		Russia
	Mexico		Serbia
	Nicaragua		Tajikistan
	Panama		Turkey
	Paraguay		Ukraine
	Peru		Cambodia
	Uruguay		Indonesia
	Venezuela		Malaysia
	Central African Republic	EAP	Mongolia
	Madagascar		Philippines
	Malawi		Thailand
	Mali		Vietnam, Democratic Republic of
	Namibia		Bangladesh
	Niger		Bhutan
SSA	Nigeria	SA	India
	Rwanda		Pakistan
	Senegal		Sri Lanka
	South Africa		Egypt
	Togo	MENA	Iran
	Uganda		Jordan
	Zambia		Tunisia

Appendix 4.2. Descriptive Statistics

Variables	Obs.	Mean	Std. Dev.	Min	Max
Real GDP_pc	739	4,220	3,529	284.4	14,688
GDP growth (annual %)	739	4.908	4.247	-36.7	34.5
Total natural resources rents (% of GDP)	738	7.327	7.84	0.071	44.56
Population, total	741	3.92E+07	5.44E+07	613,353	2.58E+08
Trade (% of GDP)	738	78.54	34.05	21.45	210.4
Number of credit unions and credit cooperatives	373	4,193	18,916	1	111,797
Depositors with commercial banks	455	1.75E+07	2.73E+07	37,746	1.32E+08
Loan accounts with commercial banks	450	1.46E+07	4.91E+07	1,400	4.67E+08
Outstanding deposits with commercial banks	836	1.61E+08	8.53E+08	170.7	1.10E+10
Number of commercial bank branches/ 100,000 adults	822	13.68	11.66	0.289	71.21
Number of depositors with commercial banks/ 1,000 adults	455	568.5	531.8	7.513	3,380
Number of loan accounts with commercial banks/ 1,000 adults	450	323.9	359.3	0.529	2,909
Automated teller machines (ATMs) /100,000 adults	785	30.95	29.05	0	185.3
GINI index	473	41.33	8.939	24	64.8
Agriculture value added / GDP	852	13.3	8.996	2.089	43.4
Tax-to-GDP ratio	781	15.76	5.674	3.133	36.33
Direct taxes	680	5.208	2.717	0.0182	17.44
Taxes on income	731	5.403	2.8	0	18.01
Taxes on property	601	0.307	0.399	0	1.847
Indirect taxes	749	10.57	4.233	1.619	26.54
Total taxes on goods and services	761	8.319	3.77	0.422	18.91
Value-added tax (VAT)	675	5.326	2.98	0	14.68
Taxes on trade	748	1.749	1.759	0.169	13.13
Debt-to-GDP ratio	711	41.36	22.25	3.89	160.5
Polity2 index	739	4.453	5.202	-10	10
Inflation	742	7.314	7.802	-3.109	121.7
Gross fixed capital formation / GDP	858	25.12	8.071	6.812	69.53
Net ODA received_pc	852	45.88	48.88	-49.54	304.6
Human capital index	616	2.359	0.55	1.137	3.357
Financial markets efficiency	671	0.188	0.283	0	1
Private consumption_pc	430	2,434	1,709	311.5	8,406
Remittances/ GDP	840	5.93	7.208	0.0106	44.13
Unemployment	476	8.049	6.181	0.914	46.03
Tax revenue diversification index	381	0.622	0.276	0.155	1.539
Private credit bureau	374	17.631	17.063	0	54

Appendix 4.3. Sources and Definitions of Data

Variables	Definition	Sources
ATMs / 100,000 adults	Automated teller machines (ATMs) (per 100,000 adults)	
Bank branches/ 100,000 adults	Number of commercial bank branches per 100,000 adults	
Loan accounts/ 1000 adults	Number of loan accounts with commercial banks per 1,000 adults	
Depositors/ 1000 adults	Number of depositors with commercial banks per 1,000 adults adults	IMF FAC 2010 Detect
Credit unions and cooperatives	Number of credit unions and credit cooperatives	IMF, FAS 2019 Dataset
Outstanding deposits	Outstanding deposits with commercial banks	
Depositors with CBs	Depositors with commercial banks	
Loan accounts with CBs	Loan accounts with commercial banks	
Tax-to-GDP ratio	Non-resource tax excluding social contributions	
Indirect taxes-to-GDP ratio	Indirect taxes excluding social contributions and resource revenue	
Direct taxes-to-GDP ratio	Direct taxes excluding social contributions and resource revenue	
Taxes on income-to-GDP ratio	Taxes on income, profits, and capital gains	ICTD/UNIU WIDED CDD 2010
Taxes on goods-to-GDP ratio	Taxes on goods and services, Total	ICTD/UNU-WIDER, GRD 2019
Value-added tax-to-GDP	Value-added tax	
Tax on property-to-GDP	Taxes on property	
Taxes on trade-to-GDP	Taxes on international trade and transactions	
Tax diversification index	Theil index-based tax revenue diversification index	Compaore et al . (2020)
Real GDP_pc	Real GDP_pc	
Resources rent	Total natural resources rents (% of GDP)	
Trade openness	Sum of total imports and exports (% of GDP)	
Agriculture VA	Agriculture value added (% of GDP)	
Population	Total population	World Bank's World
Aid_pc	Net official development assistance received per capita (current US\$)	Development Indicators
Remittances	Personal remittances, received (% of GDP)	(WDI, 2019)
Public investment	Gross fixed capital formation (% of GDP)	
GDP growth	GDP growth (annual %)	
GINI index	GINI index	
Private consumption_pc	Households and NPISHs Final consumption expenditure per capita	
l la a manal as una a nat	Unemployment with advanced education (% of total labor force with	
Unemployment	advanced education)	
Inflation	Inflation, average consumer prices	World Economic Outlook (WEO, 2019)
Financial sector efficiency	Financial markets efficiency	IMF's Financial Development Index Database
Public debt-to-GDP ratio	Debt to GDP ratio	Ali Abbas et al . (2010)
Human capital index	Human capital index	Penn World Table (PWT9.1)
Polity2 index	Polity2 index	Polity4 Project
,	1 2 -	, .J

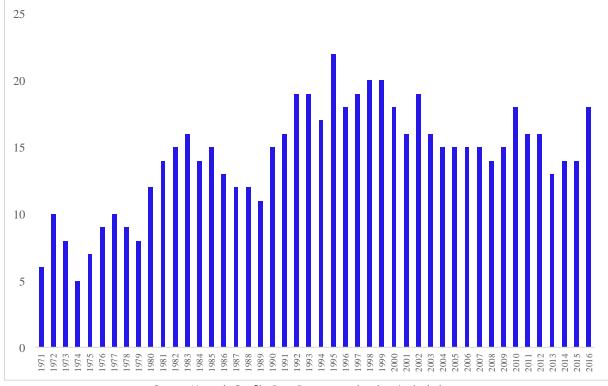
Appendix 4.4. Robustness Check: Using Alternative Financial Inclusion Variables

Dependent variable: Total non-resource tax-to-GDP ratio							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dep. variable ₍₋₁₎	0.98195***	0.91934***	0.99999***	0.97207***	0.96158***	0.94884***	0.93131***
	(0.026)	(0.034)	(0.065)	(0.039)	(0.035)	(0.047)	(0.039)
Bank branches /100,000 adults (Log)	0.39697*						
	(0.216)						
Loan accounts with CBs / 1,000 adults		0.00085**					
		(0.000)					
Depositors with CBs/ 1,000 adults (Log)			0.39437***				
			(0.130)				
Credit unions and credit cooperatives (Log)				0.17861*			
				(0.094)			
Outstanding deposits with CBs (Log)					0.22248**		
					(0.104)		
Depositors with CBs (Log)						0.26622**	
						(0.130)	
Loan accounts with CBs (Log)							0.00000**
							(0.000)
Control variables	YES						
Nb. of observations	585	320	341	282	591	341	320
Countries	61	38	37	31	61	37	38
AR(1) <i>p-value</i>	0.000	0.003	0.000	0.000	0.000	0.000	0.005
AR(2) p-value	0.938	0.277	0.933	0.345	0.726	0.971	0.324
Hansen OID (p-value)	0.145	0.276	0.308	0.257	0.113	0.334	0.350
Nb. of instruments	34	37	27	30	33	32	27
Year FE	YES						

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 4.5. Robustness Check: Using Alternative Tax Data Source

Dependent variable: Non-resource tax-to-GDP ratio						
	(1)	(2)	(3)	(4)	(5)	(6)
	Tot. Tax	Indirect	Direct	Income	Gds & Serv.	VAT
Dep. variable ₍₋₁₎	0.93419***	0.94664***	0.72407***	0.55052***	0.83982***	0.84138***
	(0.054)	(0.019)	(0.048)	(0.073)	(0.043)	(0.026)
ATMs /100,000 adults (Log)	0.57344***	0.03778	0.09862***	0.17310**	0.03613	0.09707***
	(0.221)	(0.038)	(0.035)	(0.084)	(0.069)	(0.038)
Real GDP_pc	0.00051**	0.00041***	0.00004	-0.00007	0.00025***	0.00030***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Squared real GDP_pc (Log)	-0.22008**	-0.09573***	-0.01931	0.01345	-0.06755**	-0.09786***
	(0.096)	(0.022)	(0.035)	(0.048)	(0.033)	(0.017)
Total natural resources rents (Log)	0.24967	-0.08976*	0.32007***	0.41351***	-0.18594**	0.04066
	(0.155)	(0.047)	(0.073)	(0.117)	(0.079)	(0.038)
Trade openness	2.61191***	-0.01759	1.55332***	1.70134***	-0.01693	0.98626***
	(0.993)	(0.279)	(0.511)	(0.383)	(0.375)	(0.274)
Agriculture value added	-0.15356*	-0.01422	-0.06269**	-0.05246	-0.03955	-0.05176***
	(0.082)	(0.014)	(0.029)	(0.051)	(0.034)	(0.018)
Polity2 index	0.05684**	0.01377	0.02256	0.00114	0.01302	0.03541***
	(0.029)	(0.009)	(0.022)	(0.021)	(0.014)	(0.013)
Constant	1.90469	5.33194***	-3.96212	-5.64911	5.34860**	1.76028
	(7.966)	(1.773)	(3.056)	(3.996)	(2.613)	(1.610)
Nb. of observations	431	321	320	431	421	411
Countries	52	37	37	52	52	51
AR(1) p-value	0.000	0.003	0.006	0.009	0.000	0.023
AR(2) p-value	0.234	0.213	0.858	0.241	0.370	0.581
Hansen OID (<i>p-value</i>)	0.121	0.290	0.249	0.766	0.176	0.377
Nb. of instruments	27	32	26	27	27	36
Year FE	YES	YES	YES	YES	YES	YES


^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

Chapter 5: The Impact of Conflicts and Political Instability on Banking Crises in Developing Countries*

^{*}This chapter is co-authored with M. Mlachila, R. Ouedraogo, and W. Sandrine Sourouema. A version was published in IMF Working Paper Series and is currently under advanced review in *The World Economy*.

5.1. Introduction

There has been a marked proliferation of violence and conflicts across the developing countries over the past two decades, especially in the wake of the Arab spring from 2011 (Figure 5.1). The nature of the violence is diverse and includes ethnic and religious conflicts, terrorism, postelectoral conflicts, civil wars, and most importantly armed conflicts. Violence has undoubted deep socio-economic impact on affected countries and their neighbors. For instance, the World Bank (2017) estimates at more than 400,000 the death toll and US\$200-300 billion the loss in GDP in Syria since the conflict started in 2011.

Figure 5.1. Number of Countries in Conflict

Source: Uppsala Conflict Data Program and authors' calculations.

Conflicts and violence have severe negative consequences on the affected economies, and which can spill over to their neighboring countries. In addition to the loss of lives, human displacement and the material destruction caused, conflicts can result in deep economic recession stemming from high inflation, worsened fiscal and financial positions, and lower institutional quality (Rother *et al.*, 2016). In addition, internal instability entails a decline in investor and consumer confidence, and trade disruption (Rother *et al.*, 2016). According to the

IMF (2019), on average, in conflict-affected countries annual real GDP growth is 3 percentage points lower and the cumulative impact on per capita GDP increases over time. Furthermore, internal conflicts have negative spillovers on neighboring countries, whose GDP growth typically declines by about 1 percentage point on average.

In this chapter, we explore the impact of conflicts on the probability of banking crises, a channel that has hitherto received little attention in the literature. The literature has largely focused on the potential consequences of risks of instability on other socio-economic outcomes. It is well-documented that instability has adverse effects on countries' long-run economic performance (Alesina *et al.*, 1996; Alesina and Perotti, 1996; Jong-A-Pin, 2009; Aisen and Veiga, 2013; Rother *et al.*, 2016, Murdoch and Sandler, 2002), public investment (Alesina *et al.* 1996, IMF 2019), trade (Qureshi, 2013), tourism (Neumayer, 2004) and fiscal outcomes (IMF 2019). Surprisingly, to the best of our knowledge, there is no empirical study on the potential impact of conflict on banking crises. Although IMF (2019) and Rother *et al.* (2016) allude to the fact that conflicts can lead to lower performance in the banking sector, they do not provide empirical evidence on whether conflicts and political instability can trigger actual systemic banking crises.

Conflicts and political instability can indeed be associated with a greater risk of systemic banking crisis. Conceptually, there are several channels through which conflicts can lead to banking crises. These include lower economic growth, higher bank non-performing loans, lower bank deposits and liquidity, and fiscal channels. Rother et al. (2016) emphasized that conflicts weaken the performance of the financial sector and deteriorate banks' ability to sustain financial intermediation and payment systems. A recent study by Huang (2019) found that political instability decreases banks' balances, liabilities and assets. Beim (2005) enumerated several cases of systemic banking crises that occurred in times of conflict and political instability. For instance, in 1995, during the civil war in Sierra Leone, 40 to 50 percent of banking system loans were non-performing (NPLs) and a license of one of the banks was suspended in 1994. Gobat and Kostial (2016) found that the Syrian conflict deeply affected the banking sector by causing deposit and assets runs and raising NPLs from less than 5 to 35% over 2010-2013.

This chapter fills the gap in the literature by rigorously studying the potential impact of conflict and political instability on systemic banking crisis in 92 developing countries over the period 1970-2016. First, it explores this by using various measures of conflict and political instability on the probability of banking crises. Second, the paper analyzes spillovers of conflict and political instability from one country to another. Third, it examines whether the duration of conflict and political instability increases the probability of banking crises. Fourth, it explores the channel through which conflict and political instability affect the likelihood of banking crises.

The chapter has three main results. First, it shows that conflicts and political instability are indeed associated with higher probability of systemic banking crises. Specifically, it finds that the odds of a banking crisis are 2.5 times greater when a country is affected by a conflict. Second, conflicts and political instability in neighboring countries do increase the likelihood of banking crises in a given country, although the spillover effects are less impactful than primary channels. Third, the duration of a conflict is positively associated with rising probability of a banking crisis. In terms of magnitude of the impact, the probability of experiencing a banking crisis is 25 percent when the conflict lasts 10 years, against 16.4 percent when it lasts two years.

The chapter provides evidence that the likely channel of transmission is the occurrence of fiscal crises following a conflict or political instability. The findings are robust to the use of alternative conflict and political instability indicators from 10 different sources, alternative empirical strategy, and the inclusion of additional covariates. This paper contributes to the vast literature on the adverse effects of conflict and political instability. It is the first to provide a comprehensive empirical study about the impact of conflict and political instability on the likelihood of banking crises in developing countries. Previous studies have provided several claims on the specific cases of some countries (Beim, 2005; Rother *et al.*, 2016), but they lacked strong empirical evidence on a large sample of countries to back up or substantiate the claims.

The rest of the chapter is organized as follows. Section 2 briefly reviews the literature on the determinants of banking crises and the potential mechanisms through which conflicts can provoke banking crises. Section 3 describes the data and provides some stylized facts, and Section 4 discusses the empirical strategy. Section 5 presents the results from the empirical

analysis. Section 6 undertakes an extensive battery of robustness tests. Section 7 provides some concluding remarks.

5.2. Review of the Literature

There is an increasing literature on the economic consequences of conflicts and political instability, with a particular emphasis on economic growth, income inequality and poverty (Collier, 1999; Murdoch and Sandler, 2004; Lai and Thyne, 2007; Polachek and Sevastianova, 2012; Mueller, 2013). For instance, Gates *et al.* (2012) showed that armed conflicts led to development gaps and compromised the progress in meeting the United Nation's Millennium Development Goals (MDGs) by undermining the efforts to reduce poverty, hunger and infant mortality, improve life expectancy as well as access to potable water. Ghobarah *et al.* (2003) also emphasized the adverse long-lasting effects of conflicts on development outcomes. Beyond the impact on the economy at the aggregate level, some papers looked at the change in the structure of economies affected by conflict. Depetris Chauvin and Rohner (2009) found that the manufacturing sector is the most affected in conflict-affected countries, while natural resource sector appears to be over-exploited in times of conflict.

Another wave of the literature has focused on the fiscal implications of conflicts and political instability (IMF 2019; Gupta *et al.*, 2004; Rother *et al.*, 2016). Internal instability impedes on government revenue by disrupting economic activity, destroying the tax base, and lowering the efficiency of tax administration (IMF 2019). Barrett (2018) revealed that the conflict in Afghanistan led to a total revenue loss of about \$3 billion between 2005 and 2016, resulting mainly from a significant decline in revenue collection efficiency. Similarly, Rother *et al.* (2016) emphasized that central government revenue collapsed by about 60 percent following the outbreak of the conflict in Yemen in 2015. They also argued that the decline in both internal revenue collection and external financing combined with the increase in government spending have resulted in worsened fiscal positions in the Middle East and North African countries in conflict.

Focusing on sub-Saharan Africa, IMF (2019) found that conflicts entail, on average, a loss of tax revenue by about 2 percent of GDP, affect the composition of government expenditures and

worsen the fiscal balance. Using an intertemporal model, Pasten and Cover (2010) highlighted that political instability result in fiscal deficits, and this happens because political instability gives the government an incentive to implement a myopic fiscal policy in order to increase its chances of remaining in office.

However, there is a paucity of studies about the effects of conflicts and political instability on the banking sector. Rother *et al.* (2016) argued that conflicts weaken the performance of the financial sector and deteriorate bank's ability to sustain financial intermediation and payment systems, but they did not provide any empirical findings. Recently, IMF (2019) found that conflicts result in lower credit to the private sector. Huang (2019) investigated the impact of political instability on banking sector development on a panel of 49 countries over 1960-2004. The paper found that political instability deteriorates banks' balance sheets, generates inefficiencies in the operational management of banks and affects asset and liability allocation. Hasanov and Bhattacharya (2019) explored the effect of political factors on the likelihood of a banking crisis using a sample of OECD countries. They shed light that countries with higher government stability tend to have lower likelihood of a banking crisis. Gobat and Kostial (2016) asserted that the Syrian conflict deeply affected the banking sector by causing deposit and assets runs, and rising NPLs from less than 5 to 35% over 2010-2013.

As described above, several papers have found that conflict and political instability often lead to a deterioration of government fiscal positions. We draw on the literature about the transmission of crises from the government fiscal positions to the banking sector (Von Hagen and Ho, 2007; Reinhart and Kaminsky, 1999; Dornbusch *et al.*, 1995). According to this literature, banking crises often happen after a fiscal crisis. Worsened fiscal positions can trigger a banking crisis due to the balance-sheet linkages and banks' direct portfolio exposures (Caprio and Honohan, 2008; Caruana and Avdjiev, 2012) and the potential impact of debt defaults on the economy (lower growth, high non-performing loans, etc.) (Gertler and Kiyotaki, 2010). Budgetary pressures erode the government ability to pay its bills, which can cause an accumulation of arrears to commercial enterprises and banks and increasing banks non-performing loans. Moreover, sovereign debt is often used by banks as collateral to secure wholesale funding. Higher sovereign risk can reduce the eligibility of collateral, and hence banks' funding capacity and increase banks vulnerabilities (Popov and Van Horen, 2013).

5.3. Data Sources and Stylized Facts

5.3.1. Data Sources

The dataset consists of yearly data for 92 emerging and developing countries during the period 1970–2016. The selection of the sample is exclusively based on data availability.

We first focus on the dependent variables. The data on systemic banking crisis are from Laeven and Valencia (2018). The authors define a banking crisis as an event that meets two conditions: (i) significant signs of financial distress in the banking system (as indicated by significant bank runs, losses in the banking system, and/or bank liquidations); (ii) significant banking policy intervention measures in response to significant losses in the banking system. On the second condition, Laeven and Valencia (2018) consider policy interventions in the banking sector to be significant if at least three out of the following six measures have been used: (a) deposit freezes and/or bank holidays; (b) significant bank nationalizations; (c) bank restructuring fiscal costs (at least 3 percent of GDP); (d) extensive liquidity support (at least 5 percent of deposits and liabilities to non-residents); (e) significant guarantees put in place; and (f) significant asset purchases (at least 5 percent of GDP). Our sample covers 191 episodes of banking crises.

Regarding the data on conflict and political instability, we collected a range of indicators from several sources, covering most of those that have been used in the literature. First, we extract the data on civil wars from the Uppsala Conflict Data Program (UCDP) provided by the Department of Peace and Conflict Research, Uppsala University. In this database, internal armed conflicts are defined as a contested incompatibility concerning government and/or territory with the use of armed force between two parties, of which at least one is the government of a state. The database provides an intensity-scaled measure of internal armed conflicts, which takes the value of 1 if the internal conflict's related death toll in a given ye ar is 25–999, 2 if it is 1000 or more, and 0 otherwise. Based on this definition, we also construct an additional binary variable equal to 1 if a civil conflict happens in the country and 0 otherwise as in Miguel *et al.* (2014) and Holder and Raschky (2014).

Second, we extract some indicators of political instability from Banks and Wilson (2019)'s Cross-National Time-Series Data Archive. We use 6 indicators from this database that have been widely used in the literature as proxies of political instability (see Alesina *et al.* 1996; Aisen and Veiga, 2013; Neumayer 2004):

- (i) Government cabinet changes. Represents the number of time in a year that a new premier minister is named and/or 50% of the cabinet posts are assumed by new ministers;
- (ii) Changes in effective executive. Measures the number of times in a year that effective control of executive power changes hands. Such a change requires that the new executive be independent of his predecessor. This variable addresses one of the drawbacks of the indicator related to major government changes as some cabinet changes may not entail change in executive power;
- (iii) Anti-government demonstrations. Captures any peaceful public gathering of at least 100 people for the primary purpose of displaying or voicing their opposition to government policies or authority, excluding demonstrations of a distinctly anti-foreign nature;
- (iv) *Major government crises*. Denotes any rapidly developing situation that threatens to bring the downfall of the present regime excluding situations of revolt aimed at such overthrow;
- (v) *General strikes*. Measures any strike of 1,000 or more industrial or service workers that involves more than one employer and that is aimed at national government policies or authority; and
- (vi) *Political assassinations*. Represents any politically motivated murder or attempted murder of a high government official or politician.

These indicators are the most used in the literature, and we will use them in our baseline estimates. Appendix 5.1 presents the correlations between the different conflicts and political variables. While some variables are highly correlated, the vast majority of them have low degrees of correlation (less than 0.3), providing some comfort that they provide additional

information when used in different equations. This also allows us to cover several dimensions of conflict and political instability.

Third, in robustness checks, we use several other sources including: the International Country Risk Guide (ICRG), Correlates of Wars (COW), the Political Terror Scale of Amnesty International, the Global Terrorism Database (GTD), The Major Episodes of Political Violence Database (Marshall, 2017), the Coup d'État Events Database (Marshall and Marshall, 2018) and the State Fragility Index (Marshall and Marshall, 2017) (see Appendix 5.2).

Regarding the remaining control variables, they are from different sources. We extract the real exchange rate, inflation rate, external debt in percentage of GDP, GDP per capita, real GDP growth, and terms of trade from the IMF's *World Economic Outlook* database. The data on M2/reserves and credit growth are from the World Bank's *World Development Indicators*. We finally draw the data on the degree of democracy from the Polity IV Project (Marshall and Gurr, 2018).

5.3.2. Stylized Facts

Figure 5.2 displays the relationship between the number of countries in banking crises and conflict. It shows a positive relationship between the occurrence of conflict and banking crises and provides evidence that major waves of conflict tend to be associated with a higher rate of occurrence of banking crises.

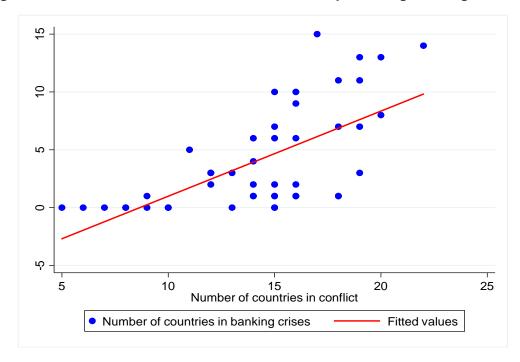


Figure 5.2. Number of Countries in Conflict and Experiencing Banking Crises

Source: Uppsala Conflict Data Program, Laeven and Valencia (2018) and authors' calculations.

Table 5.1 presents the unconditional and conditional probabilities of a banking crisis for all conflict and political instability variables included in our baseline estimates. For each variable, we present the number of observations, the number of banking crises and the probability of a banking crisis. Column (3) considers the sample for all country-year observations and describes the unconditional probability of a banking crisis, which is the proportion of country-year observations identified with the start of a banking crisis. In columns (4) and (5), we report the conditional probability of a banking crisis, which is the proportion of country-year observations during which a banking crisis occurred in the absence of conflict and political instability (column 4), and the proportion of conflict and political instability that ended up in a banking crisis (column 5). In column (6), we compute the difference in the conditional probability of a banking crisis in years without a conflict and political instability and years of conflict and political instability, while the p-value of the T-test about the significance of the difference is reported in column (7). In the last column, we report the Pearson chi-squared statistic about the independence of the occurrence of banking crises and conflict or political instability. The Pearson test shows that there a is statistically significant relationship between banking crises and conflict or political instability.

Table 5.1. Number of Countries in Conflict and Experiencing Banking Crises

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		All	No. conflict or political instability	Conflict or political instability	Difference ((5)-(4))	T-test p-value	Pearson Chi2
	Observations	3026	2364	662			
Conflict	Number of banking crises	191	125	66			19.17***
	Probability of a banking crisis	6.3	5.3	10.0	4.68	0.00	
	Observations	2975	1768	1207			
Cabinet change	Number of banking crises	191	88	103			17***
	Probability of a banking crisis	6.4	5.0	8.5	3.56	0.00	
Character of Carthur	Observations	2975	2532	443			
Change in effective	Number of banking crises	191	151	40			8.08*
executive	Probability of a banking crisis	6.4	6.0	9.0	3.07	0.02	
A	Observations	2994	2160	834			
Anti-government demonstrations	Number of banking crises	191	115	76			54.61**
demonstrations	Probability of a banking crisis	6.4	5.3	9.1	3.79	0.00	
	Observations	2994	2679	315			
Government crises	Number of banking crises	191	158	33			16.03***
	Probability of a banking crisis	6.4	5.9	10.5	4.58	0.00	
	Observations	2994	2689	305			
General strikes	Number of banking crises	191	153	38			27.69***
	Probability of a banking crisis	6.4	5.7	12.5	6.77	0.00	
	Observations	2994	2636	358			
Assassinations	Number of banking crises	191	149	42			46.19***
	Probability of a banking crisis	6.4	5.7	11.7	6.08	0.00	

Source: Uppsala Conflict Data Program, Laeven and Valencia (2018) and authors' calculations. *, **, and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively.

As can be observed, the conditional probability of a banking crisis is higher when conflict and political instability occur than in the absence of conflict and political instability. For instance, the conditional probability of a banking crisis in a year without a conflict is 5.3 percent; that probability almost doubles in years of conflict (10 percent). The difference is even stronger if we consider general strikes and political assassinations: the probability of a banking crisis increases from 5.7 percent in years without general strikes and political assassinations to 12.5 and 11.7 percent, respectively, in years of general strikes and political assassinations. The t-test in column (7) shows that the differences are statistically different. The unconditional probability of a banking crisis is around 6.4 percent regardless of the variable considered.

Table 5.2. Banking and Fiscal Crises in Years of Conflict and Political Instability

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		All	No. fiscal crisis	Fiscal crisis	Difference ((5)-(4))	T-test p-value	Pearson chi2
	Observations	641	330	311			
Conflict	Number of banking crises	66	14	52			26.98***
	Probability of a banking crisis	10.3	4.2	16.7	12.48	0.00	
	Observations	1176	583	593			
Cabinet change	Number of banking crises	102	24	78			32.05***
	Probability of a banking crisis	8.7	4.1	13.2	9.04	0.00	
Cl ' ((, '	Observations	425	232	193			
Change in effective	Number of banking crises	39	9	30			19.06***
executive	Probability of a banking crisis	9.2	3.9	15.5	11.66	0.00	
•	Observations	783	441	342			
Anti-government	Number of banking crises	75	20	55			29.52***
demonstrations	Probability of a banking crisis	9.6	4.5	16.1	11.55	0.00	
	Observations	308	146	162			
Government crises	Number of banking crises	33	5	28			16.02***
	Probability of a banking crisis	10.7	3.4	17.3	13.86	0.00	
	Observations	295	153	142			
General strikes	Number of banking crises	38	8	30			16.82***
	Probability of a banking crisis	12.9	5.2	21.1	15.90	0.00	
	Observations	353	161	192			
Assassinations	Number of banking crises	42	6	36			19.65***
	Probability of a banking crisis	11.9	3.7	18.8	15.02	0.00	

Source: Uppsala Conflict Data Program, Laeven and Valencia (2018) and authors' calculations. *, **, and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively.

Table 5.2 presents the statistics about the occurrence of banking and fiscal crises following a conflict or political instability. In column (3), we report the conditional probability of a banking crisis following a conflict or political instability, which is closely similar to what we reported in column (5) of Table 1 (the small differences are due to missing data). In column (4) and (5), we have the conditional probabilities of a banking crisis following a conflict without the occurrence of a fiscal crisis (column 4) and with the occurrence of a fiscal crisis (column 5).

Table 5.2 shows that the conditional probability of a banking crisis following the simultaneous occurrence of a conflict or political instability and a fiscal crisis is at least three times higher than the conditional probability of a banking crisis following a conflict or political instability but without the occurrence of a fiscal crisis. For instance, the conditional probability of a banking crisis after a joint occurrence of a conflict and a fiscal crisis is 16.7 percent, while that probability declines significantly to only 4.2 percent if a fiscal crisis does not materialize following the conflict. Furthermore, the conditional probability of a banking crisis following the

occurrence of a conflict or political instability is higher than the conditional probability of a banking crisis after a conflict when a fiscal crisis does not occur (column 3, Table 2) and the unconditional probability of a banking crisis (column 3, Table 5.1).

5.4. Empirical Strategy

The empirical specification used in this paper consists of a binary outcome model given that the dependent variable equals to 1 for all observations in the data for which a banking crisis happens, and 0 for the remaining ones (non-occurrence of a banking crisis). The binary response model is written as follows:

$$Pr(Y_{it} = 1 | X_{it-1}, C_i) = F(X_{it-1}\beta + C_i) = X_{it-1}\beta + C_i + \varepsilon_{it}$$
 (5.1)

where Y_{it} is a binary response variable taking the value of 1 if there is a banking crisis in a given country i at time t; X_{it-1} is a vector of observed explanatory variables including conflict and political instability; β is a vector of parameters, C_i is an unobserved time-invariant country fixed effect, and ε_{it} is the error term with a zero-mean residual uncorrelated with all the terms on the right-hand side. We lag all control variable by one year to avoid the problem of simultaneity and endogeneity.⁸⁰

The composite error term in equation (5.1), $C_i + \varepsilon_{it}$, is an important feature of panel data models. C_i , also called country-specific heterogeneity, includes historical factors that can affect the probability of experiencing a banking crisis. The key issue is whether the unobserved heterogeneity can be assumed to be independent, or at least uncorrelated, with the observed covariates X_{it} . A usual assumption is that the set of explanatory variables X_{it} is contemporaneously exogenous conditional on C_i : $E(\varepsilon_{it}|X_{it},C_i)=0$, t=1,..., T. However, this assumption is difficult to be proven valid. In fact, country-specific factors such as religion, language, regulatory framework (common or civil law), and ethnic diversity have been widely shown to affect the degree of economic development and growth (see Barro and McCleary, 2003; Campante and Yanagizawa-Drot, 2015; Mahoney, 2001; Alesina and La Ferrara, 2005;

⁸⁰ The results remain consistent even if we lag the control variables by up to five years.

Montalvo and Reynal-Querol, 2005). Given that economic growth is among the explanatory variables, thus the uncorrelation hypothesis between the time-invariant factors and the explanatory variables is violated. Moreover, treating the time-invariant factors C_i as parameters to estimate causes inconsistency in β because of the incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000).

The fixed effects approach could be used to estimate equation (5.1). The most important appealing reason is that by controlling out the time invariant variables, the model accounts for biases that occur with omitted and unobserved variables. Unfortunately, the power of the fixed effects approach results in an undesirable consequence: even where we do have data for time invariant variables, that information is excluded from the model. In addition, as noted by Caballero (2014), Eberhardt and Presbitero (2018), and Kinda *et al.* (2016), all countries that have not experienced banking crises will be excluded from the estimates. In our sample, 40 percent of countries (37 out of 92) have not experienced at all banking crises over our study period 1970-2017. Excluding these countries in the estimates raises the issue of selection bias and inconsistent results. As argued by Bell and Jones (2015), the fixed effects models are only modelling one part of the data structure, the within-country effects at the expense of between-country effects.

Mundlak (1978) provides a method by which it is possible to incorporate both the time-invariant variables with the demeaned coefficients from the fixed effects model and at the same time use the framework of a random effects model (hence a hybrid model). This method, called the correlated random effects, assumes that the unobserved heterogeneity is a function of the country-level time averages of X_{it} , which we denote as \overline{X}_i . That is, $C_i = \omega + \overline{X}_i \delta + a_i$, where \overline{X}_i is an average of X_{it} over time for country i (hence time invariant); a_i is assumed uncorrelated with \overline{X}_i and normally distributed. Therefore, the random effects-Mundlak (1978) model allows for modeling the distribution of the omitted variable conditional on the means of the strictly exogenous variables, instead of treating the omitted variable as a parameter to estimate. The probability that $Y_{it} = 1$ can now be written as:

$$Pr(Y_{it} = 1 | X_{it}, C_i) = Pr(Y_{it} = 1 | X_{it}, \overline{X}_i, C_i) = F(X_{it}\beta + \omega + \overline{X}_i\delta + a_i) = X_{it}\beta + \overline{X}_i\delta + a_i + \varepsilon_{it}$$
(5.2)

In this chapter, we employ the random effects-Mundlak model by including the means of all time-varying covariates for the countries in the estimates. These averages have the same value for a given country across years but vary across countries. By including the vector of time-averaged variables, we still control for time-constant unobserved heterogeneity, as with fixed effects, while avoiding the problem of incidental parameters in nonlinear models. At the same time, the Mundlak model allows measurement of the effects of time-constant independent variables, just as in a traditional random effects model (Wooldridge, 2010). Therefore, by taking care of all country-specific and time-invariant characteristics that may affect the likelihood of a crisis or the occurrence of conflict and political instability, or both, the Mundlak model allows for different within and between-country effects (Caballero, 2014). Contrary to the simple fixed effects model which excludes all countries that have not experienced banking crises from the sample, the random effects-Mundlak model takes into account all these countries in the estimates.

In robustness checks, we will use the traditional probit and logit models, as well as the probit fixed-effects model of Fernández-Val and Weidner (2016). The approach by Fernández-Val and Weidner (2016) accounts for the bias arising from the inclusion of country fixed-effects and corrects for the incident parameter bias problem by subtracting from the maximum likelihood estimator a plug-in estimator of the bias. As explained above, the main drawback of this method is that it excludes all countries that have not experienced banking crises.

Relying on the extensive literature on the determinants of banking crises, we control for a number of variables:

- Real effective exchange rate: the literature shows that a sharp decline in the real exchange rate is associated with a greater risk of banking system distress (De Bock and Demyanets, 2012; Kaminsky and Reinhart, 1999; Reinhart et al., 2000). For instance, De Bock and Demyanets (2012) found that exchange rate depreciation implies increasing rates of NPLs and banking turmoil on a sample of 25 emerging markets over 1996-2010. Hence, we expect a depreciation of the real exchange rate to be positively associated with an increase in the likelihood of a banking crisis.
- M2/reserves: it measures banks' exposure to foreign exchange risk and a country's vulnerability to currency crises which often coincide with banking crises (Davis and

Stone, 2004; Kinda *et al.*, 2016). Thus, we expect a positive correlation between M2/reserves and banking crises.

- Inflation: we include this variable to capture the macroeconomic mismanagement as previous studies clearly evidenced that high rates of inflation are associated with banking crises (Demirgüç-Kunt and Detragiache, 1998-2000; Davis et al., 2011; Joyce, 2011). High inflation tends to undermine long-run economic growth and distorts macroeconomic and financial stability. Therefore, a positive correlation between inflation and banking crises is expected.
- *Credit growth*: an important body of the literature argues that high credit growth is conductive to banking sector problems (Cihák, 2007; Joyce, 2011; Acosta-Gonzalez *et al.*, 2011). For instance, Beck *et al.* (2006) underline that a credit boom could induce an asset price bubble that may cause a crisis when it bursts. Moreover, Büyükkarabacak and Valev (2010) provided evidence that a rapid credit boom generates vulnerabilities that increase the probability of a banking crisis. However, a few studies including Von Hagen and Ho (2007) and Rose and Spiegel (2011) do not find evidence that a boom in the credit-to-GDP ratio is associated with greater probability of a banking crisis.
- External debt: high debt-to-GDP ratio indicates greater tighter financial conditions and reduced fiscal space (Kinda et al., 2016) and is likely to lead a banking crisis. In countries where banks are the main holders of government debt, worsened financial conditions or sovereign debt defaults would undoubtedly weaken banks' balance sheets. Moreover, heavily-indebted economies are more likely to face high-risk premium in international capital markets. As a result, government capacity to intervene in case of banking liquidity shortage becomes very limited. We expect a positive correlation between external debt and the likelihood of a banking crisis.
- GDP per capita: it captures the level of development in a country. Some studies (Demirgüç-Kunt and Detragiache, 2000-2005; Kinda et al. 2016) found that banking crises are negatively associated with real GDP per capita.
- GDP growth: according to the literature, deteriorating growth prospects are associated with greater risk of a banking crisis as lower economic growth negatively affects banks'

balance sheets by increasing the share of non-performing loans (Klomp, 2010). Some studies found that in most cases, banking crises followed an episode of growth slowdown (Demirgüç-Kunt and Detragiache, 1998-2005; Von Hagen and Ho, 2007; Angkinand and Willett, 2011). We thus expect a negative association between economic growth and banking crises.

- Terms of trade: a deterioration of the terms of trade reduces the ability of bank's customers to service their financial commitments, leading to an increase of NPLs and rendering banking crises more likely (Goldstein and Turner, 1996; Caprio and Klingebiel, 1999). Hence, we expect a negative correlation between terms of trade and banking crises.
- Degree of democracy: it refers to the quality of the politico-institutional environment and is expected to be negatively associated with the occurrence of a banking crisis. Countries with good institutions and governance tend to implement sound financial regulations to promote banking system stability that can potentially, in turn, reduces the probability of banking crisis (Francis, 2003; Beck et al., 2006). In addition, financial fraud and the excessive risk-taking in weak institutional countries increase the vulnerability of the banking sector and result in banking collapses (Kinda et al., 2016). A negative correlation between the degree of democracy and the likelihood of a banking crisis is expected.

5.5. Empirical Results

5.5.1. Baseline Results

The baseline evidence on the relationship between conflicts, political instability and banking crises is reported in Table 5.3. We present in each column the results obtained through the estimates of equation (2) employing the random effect model of Mundlak (1978) and using several indicators of conflicts and political instability. The first two columns are about the effects of conflicts, while the remaining columns deal with the effects of political instability. In column (1), we use a binary variable taking the value of 1 if the country experiences a conflict

and 0 otherwise. The results show that the coefficient associated with this binary variable is positive and statistically significant at the 1 percent level. This finding suggests that being in conflict affects positively the likelihood of occurrence of banking crises.

The test statistics suggest that the Mundlak (1978) approach used in the estimates is accurate and that the model classifies properly the group of countries that experienced banking crises and those that did not experience banking crises. We report at the bottom of the table the area under the ROC curve (AUROC) statistics and their standard errors to test the goodness of fit of the model. The AUROC statistic is between 0 and 1, with higher values representing a strong performance of the model. In Table 3, the AUROC statistic is above 0.73 in all the columns.

To give an idea about the magnitude, we follow Caballero (2014) in analyzing our results in terms of odds ratios. Given that we are using a logit model, the odds ratios are the exponentiated values of the coefficients reported in Table 5.3. Therefore, based on the results in column (1), the odds of a banking crisis are 2.5 times greater when a country is affected by a conflict. The probability of experiencing a banking crisis raises from 6.3 percent (unconditional probability) to 13.5 percent when a country is in conflict.⁸¹ In column (2), we use the intensity of conflict instead of the binary variable used in column (1). The results remain consistent as the coefficient associated with conflict is positive and significant at the 1 percent level.

Turning to the effects of political instability, we present in column 3 the results when we use the change in government cabinet as an indicator of political instability following Alesina *et al.* (1996) and Aisen and Veiga (2013). We find that the coefficient associated with the variable cabinet changes is positive and highly significant at the 1 percent level. That said, political instability is correlated with a higher occurrence of banking crises. Quantitatively, an increase in the number of cabinet changes from zero to four (which is the maximum observed in the

_

⁸¹ The odds are the ratio of the probability of a positive outcome to the probability of no positive outcome: odds = p/q, where q=1-p and p=Pr(Y=1|X). In our sample, the unconditional probability of a crisis is 6.3 percent (191 crises out of 3,026 observations), which implies odds(crisis) = 0.0631. In column 1 of Table 5.3, the odds of a crisis, conditional on the occurrence of a conflict, increase by 2.5 times (this is the exponentiated coefficient associated with conflict: 0.9097). Then, the estimated conditional probability of a crisis is 0.1355 = (2.5*0.0631)/[1 + (2.5*0.0631)]. All analyzes in the subsequent sections follow this methodology.

sample) is associated with an increase in the likelihood of banking crises to 21.17 percent, from the unconditional probability of experiencing a banking crisis of 6.3 percent.

Table 5.3. Baseline Results

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Conflict (binary)	Conflict (intensity)	Cabinet changes	Changes in Effective Executive	Anti-Government Demonstrations	Government Crises	General Strikes	Assassinations
Variable in column (X) ₍₋₁₎	0.9097***	0.4483***	0.3620***	0.3277**	0.0295*	0.2894**	0.2211**	0.0788*
	(0.245)	(0.167)	(0.126)	(0.150)	(0.017)	(0.134)	(0.094)	(0.042)
Exchange rate ₍₋₁₎	-0.0903**	-0.0892**	-0.0931**	-0.0959**	-0.0910**	-0.1024**	-0.0987**	-0.0899**
	(0.039)	(0.039)	(0.039)	(0.039)	(0.039)	(0.040)	(0.039)	(0.039)
M2/reserves ₍₋₁₎	0.5660***	0.5531***	0.5605***	0.5658***	0.5691***	0.5675***	0.5666***	0.5675***
	(0.124)	(0.124)	(0.123)	(0.123)	(0.123)	(0.123)	(0.123)	(0.123)
Inflation ₍₋₁₎	1.0096***	1.0140***	1.0163***	1.0224***	1.0509***	1.0638***	1.0106***	1.0148***
	(0.172)	(0.173)	(0.169)	(0.172)	(0.170)	(0.172)	(0.172)	(0.172)
Credit growth ₍₋₁₎	0.4867*	0.3878	0.3468	0.2923	0.3007	0.3571	0.2995	0.3088
	(0.293)	(0.286)	(0.281)	(0.281)	(0.280)	(0.283)	(0.280)	(0.281)
External debt ₍₋₁₎	0.7992***	0.7981***	0.8284***	0.8410***	0.8267***	0.8388***	0.8137***	0.8282***
	(0.144)	(0.145)	(0.144)	(0.144)	(0.144)	(0.144)	(0.144)	(0.144)
GDP per capita ₍₋₁₎	-0.3966	-0.3913	-0.3530	-0.3983	-0.4916	-0.3989	-0.4452	-0.4245
	(0.315)	(0.317)	(0.318)	(0.316)	(0.317)	(0.316)	(0.313)	(0.317)
Economic growth ₍₋₁₎	-0.0324*	-0.0312	-0.0257	-0.0277	-0.0324*	-0.0289	-0.0331*	-0.0340*
3	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.020)	(0.019)	(0.019)
Terms of trade ₍₋₁₎	0.0286	0.0910	-0.1673	-0.0626	0.0235	-0.0540	0.0422	-0.0172
	(1.206)	(1.207)	(1.218)	(1.218)	(1.206)	(1.210)	(1.204)	(1.210)
Degree of democracy ₍₋₁₎	-0.0460**	-0.0469**	-0.0524***	-0.0540***	-0.0466**	-0.0514***	-0.0518***	-0.0483***
	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)
Nb. of observations	3,026	3,026	2,972	2,972	2,991	2,991	2,991	2,991
Countries	92	92	92	92	92	92	92	92
Log likelihood	-598.7	-602.1	-599.5	-600.6	-603.3	-602.4	-602.2	-603.1
Wald chi2	326.9	323.8	335.6	333.5	327.5	328.1	335	323.8
Rho(LR)	0.482	0.484	0.460	0.457	0.471	0.469	0.465	0.476
P-value(Rho)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUROC	0.751	0.744	0.742	0.739	0.734	0.734	0.740	0.737
seAUROC	0.0174	0.0174	0.0175	0.0183	0.0181	0.0178	0.0177	0.0177

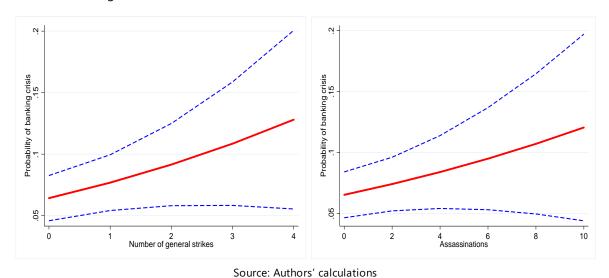
^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

In column 4, we use the number of changes in effective executive as a proxy of political instability (Alesina *et al.*, 1996). We find a positive correlation between the number of changes in effective executive and the occurrence of banking crises. In the remaining columns, we use the number of anti-governmental demonstrations, government crises, general strikes and political assassinations as proxies of political instability. We still find that the coefficients associated with these variables are positive and significant, although the level of significance differs between columns.

Figure 5.3 presents the predicted values of the likelihood of banking crises for different levels of conflict probability and intensity, and political instability. The predicted values are obtained from the regressions in Table 5.3. The blue lines represent the predicted probability of a banking crisis given the probability of a conflict (panel 3.A), the intensity of conflict (panel 3. B) or the intensity of political instability (panel 3. C-H). The dashed lines indicate the 95 confidence

intervals. Figure 5.3 shows clearly that the higher the likelihood or intensity of conflict and political instability, higher the likelihood of experiencing a banking crisis.

Figure 5.3. Predicted Probability of a Banking Crisis 5.3.a. Probability of Conflict 5.3.b. Intensity of Conflict 15 Probability of banking crisis Probability of banking crisis 05 .8 .4 .6 Probability of conflict 3.c. Number of Cabinet Changes 5.3.d. Number of Changes in Effective Executive 25 Probability of banking crisis .2 .25 Probability of banking crisis .05 Number of cabinet changes 1 2 3 Number of changes in effective executive 5.3.e. Number of Anti-government Demonstrations 5.3.f. Number of Government Crises 17 Probability of banking crisis .06 .08 .1 Probability of banking crisis


2 3 4 Number of government crises

10

9

5.3.g. Number of General Strikes

5.3.h. Number of Assassinations

Regarding the remaining control variables, with a few exceptions, they are significant and consistent with the literature. We find that the coefficients associated with M2/reserves, inflation, credit growth, and external debt are all positively correlated with banking crises. It has been shown that an increase in broad money compared to the level of reserves is positively associated with a high occurrence of banking crises (Demirgüç-Kunt and Detragiache, 2000-2005; Davis and Stone, 2004; Von Hagen and Ho, 2007; Kinda *et al.*, 2016). High inflation rates negatively affect the banking sector stability (Davis *et al.*, 2011 and Joyce, 2011), while amounting debt level is often considered as a predictor of banks failures.

On the other hand, the coefficients associated with exchange rate, economic growth, and the degree of democracy are negatively associated with banking crises. As shown in the literature, a depreciation of the exchange rate can potentially lead to a banking crisis (Reinhart *et al.*, 2000; Duttagupta and Cashin, 2011; De Bock and Demyanets, 2012). A sound politico-institutional environment is less favorable to the occurrence of banking turmoil (Beck *et al.*, 2006; Kinda *et al.*, 2016). However, as in Demirgüç-Kunt and Detragiache (2000), the level of development measured by the GDP per capita is not statistically significant. Similarly, the terms of trade are found to be a non-significant determinant of banking crisis.

Table 5.4 reports the results when we split the sample into two subsamples: emerging markets and low-income countries, following the IMF classification of countries. The results show that

conflict and political instability are a predictor of banking crises in both emerging economies and low-income economies. However, the results differ slightly between the two groups of countries. For emerging markets, the coefficients associated with conflict and political instability variables are all positive and significant in all columns, except for government crises and political assassinations. For low-income countries, all coefficients are positive and significant, except those associated with effective changes in the executive, anti-government demonstrations, and general strikes.

Table 5.4. Baseline Results, by Income Group

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Conflict (binary)	Conflict (intensity)	Cabinet changes	Changes in Effective Executive	Anti-Government Demonstrations	Government Crises	General Strikes	Assassinations
				E	merging countries			
Variable in column (X) ₍₋₁₎	0.9573*** (0.347)	0.5454** (0.230)	0.3021*	0.3582*	0.0551* (0.030)	0.1899 (0.153)	0.2515** (0.111)	0.0412 (0.053)
Nb. of observations	1,638	1,638	1,637	1,637	1,637	1,637	1,637	1,637
Countries	49	49	49	49	49	49	49	49
Log likelihood	-366.1	-367.2	-368	-367.9	-368.5	-368.6	-367.5	-369.6
Wald chi2	196.7	193.4	209.1	203	200.2	202.5	211.7	196.2
Rho(LR)	0.438	0.444	0.403	0.421	0.424	0.411	0.407	0.430
P-value(Rho)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUROC	0.743	0.737	0.727	0.734	0.727	0.726	0.729	0.730
seAUROC	0.0173	0.0171	0.0176	0.0178	0.0174	0.0174	0.0174	0.0174
				Low-inco	ome developing co	untries		
Variable in column (X) ₍₋₁₎	1.1874*** (0.368)	0.4909* (0.272)	0.4627** (0.211)	0.2014 (0.270)	0.0478 (0.043)	0.7460** (0.341)	0.2996 (0.207)	0.2972*** (0.089)
Nb. of observations	1,306	1,306	1,253	1,253	1,272	1,272	1,272	1,272
Countries	43	43	43	43	43	43	43	43
Log likelihood	-210.5	-213.8	-209.1	-213.6	-213.8	-212.2	-213.4	-210.4
Wald chi2	139.2	135.4	145	134.3	134.9	138.8	135.3	139.4
Rho(LR)	0.474	0.477	0.400	0.452	0.458	0.452	0.458	0.460
P-value(Rho)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUROC	0.656	0.642	0.642	0.648	0.638	0.645	0.646	0.651
seAUROC	0.0213	0.0215	0.0216	0.0211	0.0213	0.0213	0.0213	0.0213
Control variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

Considering the case of conflict, its effect on banking crises is higher in low-income countries than in emerging markets. The probability of experiencing a banking crisis increases to 14.12 percent when an emerging market is hit by a conflict, while that probability jumps to 17.15 percent in a low-income country.

5.5.2. Do Conflicts and Political Instability in Neighboring Countries Matter?

In this subsection, we assess whether conflicts and political instability in neighboring countries affect the likelihood of experiencing a banking crisis in a given country. Such spillover effects can occur as banks perform their activities in bordering countries in search of portfolio diversification and the last two decades have been marked by an increase in financial globalization (Mishkin, 2007; Kose *et al.* 2006). Previous studies have shown that conflicts in bordering countries matter. For instance, Qureshi (2013) found a significant negative effect of both intrastate and international conflicts on the bilateral trade of neighboring countries that may not be directly involved in any conflict. Murdoch and Sandler (2004) and De Groot (2010) highlighted that conflicts have negative spillover effects on neighboring countries by inducing a significant decline in output growth in the short-run.

We define the variables of conflicts and political instability in neighboring countries as follows. For conflict, we define two variables: one being the number of bordering countries in conflict and another being the simple average of conflict intensity in bordering countries. For political instability variables, we generate the simple average of the number of cabinet changes, changes in effective executive, anti-government demonstrations, government crises, general strikes and political assassinations in bordering countries. We then run the same regressions as in Table 5.3.

The results are reported in Table 5.5. We find that the coefficients associated with our variables of interest are positive and statistically significant in columns 1-4, although the spillover effect is generally lower than the direct one. This suggests that conflicts and political instability in neighboring countries increase the likelihood of banking crises in a given country. More specifically, for a given country, an increase in the number and intensity of conflict, and the number of changes in government cabinet and effective executive and the number of general strikes in bordering countries are associated with an increase in its probability to experience a banking crisis.

For instance, if we focus on column (1), a rise in the number of bordering countries affected by conflict from 0 to 3 (which is the median number of bordering countries in conflict)

would result in an increase of the likelihood of banking crises from 6.3 percent to 11.2 percent. On the other hand, we find the coefficient associated with the number of antigovernment demonstrations, government crises and political assassinations in bordering countries have no significant spillover effects.

Table 5.5. Effect of Conflict and Political Instability in Neighboring Countries

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Conflict (number of states)	Conflict (intensity)	Cabinet changes		Anti- Government Demonstrations	Government Crises	General Strikes	Assassinations
Neighbor at war or pol. Instability ₍₋₁₎	0.2077***	2.2675***	0.4742**	0.7325***	-0.0171	0.1919	0.1633	-0.0210
	(0.060)	(0.735)	(0.235)	(0.262)	(0.038)	(0.156)	(0.146)	(0.064)
Variable in column (X) ₍₋₁₎	0.7820***	0.3618**	0.3983***	0.3027*	0.0300	0.2480*	0.1869*	0.0785*
	(0.238)	(0.163)	(0.132)	(0.160)	(0.019)	(0.138)	(0.099)	(0.043)
Exchange rate ₍₋₁₎	-0.1035**	-0.1013**	-0.0899**	-0.0924**	-0.0878**	-0.0989**	-0.0955**	-0.0855**
	(0.041)	(0.041)	(0.039)	(0.039)	(0.039)	(0.040)	(0.039)	(0.039)
M2/reserves ₍₋₁₎	0.5593***	0.5543***	0.5673***	0.5758***	0.5707***	0.5724***	0.5705***	0.5772***
	(0.130)	(0.129)	(0.130)	(0.130)	(0.130)	(0.131)	(0.130)	(0.131)
Inflation ₍₋₁₎	0.9740***	0.9838***	0.9887***	0.9884***	1.0153***	1.0432***	0.9819***	0.9900***
	(0.173)	(0.173)	(0.172)	(0.176)	(0.172)	(0.176)	(0.175)	(0.177)
Credit growth ₍₋₁₎	0.3985	0.3132	0.3431	0.2536	0.2684	0.3222	0.2480	0.2771
	(0.294)	(0.287)	(0.290)	(0.288)	(0.288)	(0.291)	(0.287)	(0.289)
External debt ₍₋₁₎	0.6859***	0.7398***	0.7800***	0.8003***	0.8266***	0.8257***	0.7702***	0.8081***
	(0.151)	(0.148)	(0.152)	(0.152)	(0.152)	(0.152)	(0.151)	(0.151)
GDP per capita ₍₋₁₎	0.2945	0.3251	-0.3198	-0.3818	-0.4205	-0.3571	-0.4468	-0.4374
	(0.367)	(0.380)	(0.349)	(0.345)	(0.350)	(0.348)	(0.342)	(0.348)
Economic growth ₍₋₁₎	-0.0352*	-0.0327*	-0.0219	-0.0243	-0.0322	-0.0290	-0.0337*	-0.0342*
	(0.019)	(0.019)	(0.020)	(0.020)	(0.020)	(0.020)	(0.020)	(0.020)
Terms of trade ₍₋₁₎	-0.0879	-0.0942	-0.0264	0.0804	0.2944	0.2047	0.2899	0.2313
	(1.218)	(1.217)	(1.291)	(1.273)	(1.244)	(1.272)	(1.251)	(1.262)
Degree of democracy ₍₋₁₎	-0.0422**	-0.0384**	-0.0514**	-0.0513**	-0.0495**	-0.0513**	-0.0519**	-0.0496**
	(0.019)	(0.019)	(0.021)	(0.021)	(0.021)	(0.021)	(0.021)	(0.021)
Nb. of observations	2,775	2,775	2,627	2,626	2,633	2,633	2,633	2,633
Countries	91	91	80	80	80	80	80	80
Log likelihood	-570.3	-575.1	-520.5	-521.8	-525.5	-525.1	-524.9	-526.1
Wald chi2	321.4	316	287	280.3	279.5	274.4	282.3	269.3
Rho(LR)	0.471	0.475	0.479	0.484	0.479	0.494	0.486	0.502
P-value(Rho)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUROC	0.756	0.745	0.756	0.752	0.746	0.741	0.748	0.741
seAUROC	0.0178	0.0177	0.0183	0.0185	0.0185	0.0188	0.0182	0.0185

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors a re reported in brackets.

5.5.3. Duration of Conflict and Political Instability

We explore whether the duration of conflict and political instability matter. For each variable, we redefine a new variable taking the value of 1 if the conflict or political instability lasts 1 year, or at least 2 years, 3 years, and up to 10 years. We then estimate equation (2) using the Mundlak (1978) estimator. The results are reported in Table 5. We find that conflict and political instability that last only one year has no significant effect on the occurrence of banking crises.

However, when the conflict lasts longer, its impact on the occurrence of banking crises become apparent and stronger.

Table 5.6 shows that the coefficient associated with conflict is positive and significant at the 1 percent level when the conflict lasts at least two years. We can also observe that the coefficient is higher when the conflict lasts 10 years than when it lasts only 2 years. In terms of magnitude of the impact, the probability of experiencing a banking crisis is 25 percent when the conflict lasts 10 years, against 16.4 percent when it lasts two years. This finding can be explained by the fact that when the conflict is becoming prolonged, its adverse impact on the economy and the banking sector intensifies.

Table 5.6. Duration of Conflict and Political Instability

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Conflict (binary)	Conflict (intensity)	Cabinet changes	Changes in Effective Executive	Anti-Government Demonstrations	Government Crises	General Strikes	Assassinations
		Par	nel A: Lastii	ng only one y	/ear			
Variable in column (X) ₍₋₁₎	0.0402	-0.0610	0.0215	0.1698	0.0277	0.0368	0.1251	0.0772
	(0.380)	(0.349)	(0.158)	(0.173)	(0.087)	(0.185)	(0.191)	(0.273)
		Pane	l B: Lasting	at least two	years			
Variable in column (X) ₍₋₁₎	1.1330***	0.4942***	0.4795***	0.5990**	0.0291*	0.4784***	0.2162**	0.0902**
	(0.286)	(0.172)	(0.142)	(0.238)	(0.017)	(0.157)	(0.099)	(0.042)
		Panel	C: Lasting	at least three	years			
Variable in column (X), t-1	1.2874***	0.5474***	0.3223*	0.6230*	0.0260	0.6454**	0.2094**	0.0934**
	(0.298)	(0.174)	(0.176)	(0.337)	(0.018)	(0.272)	(0.104)	(0.042)
		Panel	D: Lasting	at least four	years			
Variable in column (X) ₍₋₁₎	1.1588***	0.4514**	-0.0168	0.6500	0.0258	1.2352***	0.1421	0.1883***
	(0.302)	(0.183)	(0.238)	(0.595)	(0.019)	(0.432)	(0.125)	(0.060)
		Pane	l E: Lasting	at least five	years			_
Variable in column (X) ₍₋₁₎	1.0238***	0.3308*	-0.0762	1.1809*	0.0263	1.4419***	-0.0577	0.4256***
	(0.306)	(0.191)	(0.317)	(0.699)	(0.020)	(0.470)	(0.213)	(0.106)
		Pane	el F: Lasting	at least six y	years			
Variable in column (X) ₍₋₁₎	1.3082***	0.4562**	-0.1093	1.3174*	0.0188	1.6203**	-0.2888	0.5313***
	(0.311)	(0.191)	(0.384)	(0.743)	(0.025)	(0.782)	(0.462)	(0.156)
		Panel	G: Lasting	at least sever	ı years			
Variable in column (X) ₍₋₁₎	1.4018***	0.5400***	0.0460	1.4833*	0.0070	0.8735	0.0235	0.6380***
	(0.324)	(0.197)	(0.426)	(0.810)	(0.035)	(1.129)	(0.394)	(0.202)
		Panel	H: Lasting	at least eight	t years			
Variable in column (X) ₍₋₁₎	1.5458***	0.6565***	0.3641	1.4833*	-0.0107	0.9207		1.5646***
	(0.337)	(0.211)	(0.397)	(0.810)	(0.051)	(1.112)		(0.572)
		Pane	l I: Lasting	at least nine	years			
Variable in column (X) ₍₋₁₎	1.6883***	0.6740***	0.9237**	1.4833*	-0.0490	-	-	1.1000*
	(0.350)	(0.214)	(0.451)	(0.810)	(0.079)	-	-	(0.573)
		Pane	l J: Lasting	at least ten	years			
Variable in column (X) ₍₋₁₎	1.6462***	0.6257***	1.0215**	1.4833*	-0.0764	-	-	0.5283
	(0.375)	(0.223)	(0.448)	(0.810)	(0.094)	-	-	(0.402)
Control variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

We find similar results in columns 3, 4, 6 and 8, suggesting that the probability of a banking crisis increases when political instability persists. The coefficient associated with anti-government demonstrations and general strikes become insignificant when they last more than 2 and 3 years, respectively, due to the significant reduction in the number of cases.

5.5.4. Transmission Channels

In this subsection, we explore the channel through which conflict and political instability influence the likelihood of banking crises. As outlined above, we assert that conflict and political instability affect the likelihood of banking crises by creating some fiscal pressures, which in turn transmit to the banking sector. To test this hypothesis, we extract the data on fiscal crises from Gerling *et al.* (2017). Fiscal crises are defined as episodes of extreme fiscal distress. Our variable fiscal crisis is a binary variable taking the value of 1 if the country is under tight budgetary conditions and 0 otherwise.

We then include an interactive variable between conflict or political instability and fiscal crisis and the latter itself as additional variables. This allows us to test whether the effect of conflict and political instability on banking crises partly or totally transmit through the occurrence of fiscal crises. If the coefficients associated with conflict and political instability remain highly significant and their magnitudes do not change, thus conflict and political instability influence the likelihood of banking crises even in the absence of fiscal crises. However, if the coefficients associated with conflict and political instability become insignificant when the interactive term and fiscal crisis are included, then the effect of conflict and political instability on banking crisis can be assumed to operate through a simultaneous occurrence of fiscal crises.

The results are reported in Table 5.7. They show that the effect of conflict and political instability operates mainly through a simultaneous fiscal crisis. Indeed, the coefficients associated with the different variables of conflict and political instability become insignificant in all columns when the interactive term and fiscal crisis are included, suggesting that the budgetary constraints are key determinants of banking crises, and that some fiscal crises take place simultaneously with the occurrence of conflict and political instability. The coefficient

associated with fiscal crisis is positive and significant in all columns. This finding is in line with our main hypothesis.

Table 5.7. Transmission Channels

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Conflict (binary)	Conflict (intensity)	Cabinet changes	Changes in Effective Executive	Anti-Government Demonstrations	Government Crises	General Strikes	Assassinations
Variable in column (X) ₍₋₁₎	0.5134	0.3031	0.3006	-0.0032	-0.0903	-0.5423	-0.0607	0.0495
	(0.340)	(0.256)	(0.190)	(0.296)	(0.086)	(0.429)	(0.254)	(0.060)
Fiscal crisis ₍₋₁₎	0.3734**	0.4307**	0.4307**	0.4179**	0.3953**	0.3967**	0.4514**	0.4510**
	(0.190)	(0.188)	(0.192)	(0.185)	(0.185)	(0.183)	(0.183)	(0.183)
Variable in column (X) x Fiscal crisis ₍₋₁₎	0.5597*	0.1554	0.0733	0.4469	0.1528*	1.1221**	0.3469	0.0589
	(0.338)	(0.255)	(0.212)	(0.326)	(0.087)	(0.449)	(0.256)	(0.080)
Exchange rate ₍₋₁₎	-0.0787**	-0.0783**	-0.0815**	-0.0827**	-0.0794**	-0.0988**	-0.0890**	-0.0771**
	(0.038)	(0.038)	(0.039)	(0.039)	(0.039)	(0.041)	(0.038)	(0.038)
M2/reserves ₍₋₁₎	0.5483***	0.5362***	0.5416***	0.5502***	0.5565***	0.5679***	0.5493***	0.5493***
	(0.125)	(0.124)	(0.123)	(0.123)	(0.123)	(0.124)	(0.123)	(0.123)
Inflation ₍₋₁₎	0.9128***	0.9217***	0.9223***	0.9156***	0.9529***	0.9344***	0.9043***	0.9048***
	(0.169)	(0.170)	(0.167)	(0.169)	(0.168)	(0.172)	(0.171)	(0.171)
Credit growth ₍₋₁₎	0.5211*	0.4208	0.3800	0.3317	0.3045	0.4215	0.3154	0.3570
	(0.295)	(0.287)	(0.282)	(0.281)	(0.280)	(0.284)	(0.281)	(0.282)
External debt ₍₋₁₎	0.6656***	0.6769***	0.7102***	0.7141***	0.7036***	0.6954***	0.6952***	0.7031***
	(0.148)	(0.148)	(0.147)	(0.147)	(0.146)	(0.147)	(0.147)	(0.147)
GDP per capita ₍₋₁₎	-0.3676	-0.3679	-0.3278	-0.3554	-0.3619	-0.4238	-0.3938	-0.3983
	(0.323)	(0.322)	(0.323)	(0.321)	(0.326)	(0.323)	(0.320)	(0.322)
Economic growth ₍₋₁₎	-0.0321*	-0.0321*	-0.0267	-0.0251	-0.0298	-0.0229	-0.0336*	-0.0355*
	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)
Terms of trade ₍₋₁₎	-0.0412	0.0720	-0.1641	-0.0686	0.0289	0.0669	0.0202	-0.0491
	(1.204)	(1.208)	(1.219)	(1.221)	(1.218)	(1.224)	(1.211)	(1.214)
Degree of democracy ₍₋₁₎	-0.0441**	-0.0452**	-0.0498***	-0.0515***	-0.0416**	-0.0520***	-0.0492***	-0.0465**
	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)	(0.019)
Nb. of observations	2,986	2,986	2,934	2,934	2,953	2,953	2,953	2,953
Countries	92	92	92	92	92	92	92	92
Log likelihood	-592.5	-597.3	-594.8	-594.5	-595.5	-592.3	-595.8	-598
Wald chi2	344.8	341.8	355.5	360.1	353.3	354.5	359.3	345.5
Rho(LR)	0.459	0.457	0.432	0.424	0.435	0.442	0.434	0.445
P-value(Rho)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUROC	0.759	0.752	0.749	0.747	0.747	0.749	0.750	0.747
seAUROC	0.0173	0.0172	0.0172	0.0178	0.0177	0.0179	0.0176	0.0175

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

5.6. Robustness Checks

We now estimate a set of different specifications to test the robustness of our results.

5.6.1. Use of Alternative Data Sources

As highlighted in Section 3, several indicators of conflicts and political instability have been used in the literature. In this robustness exercise, we use multiple indicators in an attempt to test the different indicators used so far in the literature to capture the occurrence of conflict

and political instability. In Appendix 5.2, we use the indicators of country risk from the International Country Risk Guide (ICRG) as in Neumayer (2004). These variables include the risks of internal conflict (civil war, civil disorder and terrorism), external conflict (cross border conflict, interstate war and foreign pressures) and political risk which is an aggregate index combining both internal and external conflict. The results reported in Appendix 5.2 are in line with our baseline findings as the coefficients associated with the different indicators are positive and highly significant.

Appendix 5.3 presents the results obtained using various indicators of conflict and political instability from multiple sources. In column (1-4) we use some data from the Marshall (2017)'s Major Episodes of Political Violence (MEPV) dataset as in Quereshi (2013) and IMF (2019). In this database, the minimum threshold to be qualified as conflict (500 related deaths) is higher than in our baseline database (25 related deaths). We use a binary variable taking a value of 1 if the country experiences a civil war and 0 otherwise in column (1). Marshall (2017) also defines some scores reflecting the intensity of civil war and civil violence based on an eleven-point scale score (0-10), with higher values representing extreme civil war and violence. In column (2), we use the score of civil war, while the score of civil violence is used in column (3). In column (4), we use the aggregate index of total violence, which is the simple average of civil war and civil violence scores. The results show that all four variables are positive and strongly significant at the 1 percent level. Therefore, our baseline findings remain unchanged.

In column (5), our indicator of conflict is from the Correlates of Wars (COW) dataset. In this database, the threshold to be considered as civil war is high as the minimum of conflict -related deaths is 1000 deaths, compared to only 25 in UCDP database used in our baseline specification. The COW database is used in some papers (Bazzi and Blattman, 2014). Appendix 5.3 shows that using this data source does not change our findings. The coefficient associated with conflict is highly significant and higher than that of column (1) in Table 5.3. With this database, being in conflict raises the probability of a banking crisis from 6.3 percent to 17.7 percent.

In the baseline results in Table 5.3, we used the number of political assassinations as proxy indicator of political instability. We now use a very similar indicator from Marshall and Marshall

(2018) in column (6), which focuses on the assassinations of the ruling executives. This variable takes the value of 1 if the ruling executive is assassinated and 0 otherwise. We still find that the coefficient with our variable of interest is positive and strongly significant, suggesting that the assassinations of the ruling executive is a predictor of banking crises.

We now look at the cases of terrorism. One data source widely used to capture the occurrence of terrorism attacks is the Global Terrorism Database (Asongu and Nwachukwu, 2017; Lis, 2018). Recent years have been marked by an increase in terrorist attacks in the world, particularly in sub-Saharan Africa (see IMF 2019), leading to severe macroeconomic consequences as infrastructure and human capital are being damaged, businesses delay investment decisions and increase unemployment (Rother *et al.* 2016). In columns (7) we use a binary variable taking the value of 1 if a terrorist attack occurs in the country and 0 otherwise. The results show that terrorism-related attacks are positively associated with higher occurrence of banking crises. The coefficient associated with the variable is strongly significant at the 1 percent level.

As in Neumayer (2004), we use the indicator of political terror from the Political Terror Scale (PTS) database in column (8). This variable captures the violations of basic human rights and includes torture and cruel treatment and punishment, killings and unlawful use of deadly force, political assassinations, kidnappings, forced disappearances, and many other forms of treatments. Given that the source of this database is Amnesty International, the database provides an assessment of political instability made by the humanitarian community, which is very important as they often work closely with the conflict-affected populations. The coefficient associated with the variable PTS is positive and significant at the 10 percent level.

Some authors use *coups d'état* as an indicator of political instability (Fosu, 2002). Several countries have been subject to repetitive military coups, particularly in sub-Saharan Africa (Fosu, 2002; McGowan, 2003). Following these studies, we use the number of *coups d'état* in column (9). We find that the coefficient associated with this variable is statistically not significant.

Finally, we use the index of state fragility from Marshall and Marshall (2017) and the share of deaths caused by conflict in columns (10) and (11). The state fragility index captures the degree to which a country is vulnerable to political violence. The use of the proportion of the population killed during conflict aims at taking into account the size of countries, in line with IMF (2019). As shown in column (10) and (11), the coefficients associated with these two variables are positive and significant at the 5 percent level, and thus our core finding still holds.

5.6.2. Including More Covariates

To avoid the problem of omitted variables, we include several additional control variables in Appendix 5.4. In the first two panels, we check whether controlling for the global conditions will change our results. To this end, we include the S&P 500 index in panel A and the US 3-years bond yields in panel B. Given the dominance of the US economy and financial sector in the world, there is no doubt that what is happening in the US affect developing countries. Previous literature on the contagion effects and market transmission from US markets shows that what happens in US markets affects the markets in other countries (Bekaert *et al.*, 2011). The results in panel A and B show that the coefficient associated with conflict and political instability remains broadly positive and strongly significant even if we control for global conditions.

We control for the role of natural resource endowments in panels C and D. Kinda *et al.* (2018), and Eberhardt and Presbitero (2018) have found that commodity price fluctuations can lead to banking crises. To capture this potential effect, we include in panel C the index of commodity prices as in Kinda *et al.* (2018) and in panel D the total rents from natural resources as percentage of GDP. The results in these two panels are consistent with our baseline findings in Table 5.3.

In panel E, we include portfolio investment, net inflows, as percentage of GDP, while in panel F we include the real interest rate. Some studies have found that short-term flows (such as portfolio flows) (Caballero, 2014; Ghosh *et al.*, 2016) are positively associated with the likelihood of a banking crisis. Furthermore, an increase in the real interest rate is a proxy for a tightening of financial conditions which is likely to squeeze banks' balance sheets and increase the

probability of a banking crisis (Duttagupta and Cashin, 2011). After controlling for these important covariates, we still find that conflict and political instability increases the likelihood of banking crises, even if the level of significance drops when the interest rate is included. This is due to the significant reduction in the number of observations because of the lack of data on real interest rate.

Finally, we include control of corruption, the degree of exports diversification and financial development in panels G, H and I, respectively. Previous studies stress the importance of institutions that enforce and secure property rights for financial development and the probability of financial fragility being positively associated with weaker institutions (Demirgüç-Kunt and Detragiache 1998). Barth *et al.* (2009); and Beck *et al.* (2006) have shown that when bank supervisors or bank controlling shareholders abuse their power and get involved in corrupted activities, the likelihood of bank failure increases. Regarding exports diversification, some studies have found that countries with relatively low export diversification are more susceptible to banking crises (Kinda *et al.* 2018; Hausmann and Rojas-Suárez, 1996), other studies found that the level of financial development matters (Mathonnat and Minea, 2018). We find that controlling for these variables does not alter our baseline findings.

5.6.3. Alternative Econometric Methods

In this section, we use the simple probit and logit models, and the profit fixed effects model as robustness checks. As we underlined in Section 4, although the random-effects of Mundlak (1978) is our preferred econometric method, the other methods are also used in some papers either as baseline specification or as robustness check (Caballero, 2016; Ghosh *et al.*, 2016). We estimate equation (2) using these three empirical estimators. The results are reported in Appendix 5.5. We find that the coefficients associated with our variable of interest (conflict and political instability) are all positive and significant in all panels. Therefore, our baseline results still hold regardless of the econometric method used.

5.7. Concluding Remarks

Against the background of rising conflict and political instability over the past several decades, the paper investigates whether this phenomenon has led to increased occurrence of banking crises. While there is an extensive literature examining the economic impact of conflict and political instability, surprisingly there have been few studies on their impact on the probability of banking crises. This paper has attempted to fill this void.

The chapter provides strong evidence that conflicts and political instability are indeed associated with higher probability of systemic banking crises. Unsurprisingly, it also finds that the duration of a conflict is positively associated with rising probability of a banking crisis. Interestingly, the paper finds that conflicts and political instability in one country can have negative spillover effects in neighboring countries, by raising the probability of banking crises, albeit with lower likelihood.

The paper finds that the primary channel of transmission is the occurrence of fiscal crises following a conflict or political instability. Conflicts and political instability can have a negative impact on the productive capacity of a country and this in turn can reduce government revenue and increase military or other unproductive spending, leading to fiscal crises. More generally, this can generally lead to government dysfunctionality and weakening of institutions.

In terms of policy implications, it is obvious that conflict and political instability have deleterious and far-reaching socio-economic impacts. We concur with Aisen and Veiga (2013) that governments facing conflict and/or political instability need to address their root causes and try to mitigate their negative effects with the appropriate design and implementation of economic policies. Creating adequate fiscal space in normal times can reduce the likelihood of fiscal crises and in turn lower the probability of systemic banking crises. Our results also suggest that policy makers should pay attention to conflicts in neighboring countries even if they themselves are not conflict-afflicted as their banking systems may suffer negative spillovers from their neighbors.

Appendices

Appendix 5.1. Correlations Among Conflict and Political Instability Variables

	Conflict (binary)	Conflict (intensity)	Cabinet changes	Changes in effective executive	Anti-gov. demonstrations	Government crises	General strikes	Assassinations
Conflict (binary)	1							
Conflict (intensity)	0.9311*	1						
Cabinet changes	0.1139*	0.1143*	1					
Changes in effective executive	0.0560*	0.0560*	0.4969*	1				
Anti-government demonstrations	0.1116*	0.1082*	0.0567*	0.0643*	1			
Government crises	0.1137*	0.1065*	0.2234*	0.2469*	0.1118*	1		
General strikes	0.0960*	0.0843*	0.0617*	0.0818*	0.4531*	0.1330*	1	
Assassinations	0.2287*	0.2390*	0.0683*	0.0814*	0.0866*	0.1504*	0.0800*	1

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively.

Appendix 5.2. Robustness Checks: Using ICRG Data

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Civil war	Civil disorder	Terrorism	Internal conflict	Cross border conflict	Interstate war	Foreign pressures	External conflict	Aggregate index
Variable in column (X) ₍₋₁₎	3.0991***	4.6497***	3.2275***	3.6649***	3.0990***	2.7336***	3.3649***	3.0938***	3.3785***
	(0.444)	(0.664)	(0.524)	(0.530)	(0.472)	(0.388)	(0.513)	(0.451)	(0.486)
Exchange rate ₍₋₁₎	-0.2234***	-0.2238***	-0.2074***	-0.2224***	-0.2042***	-0.2233***	-0.2124***	-0.2167***	-0.2207***
	(0.072)	(0.073)	(0.071)	(0.072)	(0.069)	(0.073)	(0.072)	(0.072)	(0.072)
M2/reserves ₍₋₁₎	0.5673***	0.5663***	0.5826***	0.5743***	0.5416***	0.5591***	0.5794***	0.5570***	0.5657***
	(0.161)	(0.162)	(0.161)	(0.163)	(0.157)	(0.160)	(0.161)	(0.160)	(0.161)
Inflation ₍₋₁₎	0.9080***	0.9188***	0.9192***	0.9085***	0.9090***	0.9305***	0.9355***	0.9262***	0.9194***
	(0.218)	(0.218)	(0.220)	(0.218)	(0.217)	(0.221)	(0.221)	(0.220)	(0.220)
Credit growth ₍₋₁₎	0.5585	0.5326	0.6598*	0.5623	0.5260	0.5108	0.5542	0.5318	0.5434
	(0.401)	(0.399)	(0.401)	(0.401)	(0.400)	(0.399)	(0.401)	(0.400)	(0.400)
External debt ₍₋₁₎	0.6255***	0.6075***	0.6346***	0.6243***	0.5963***	0.5850***	0.6137***	0.5942***	0.6086***
	(0.198)	(0.197)	(0.197)	(0.198)	(0.196)	(0.198)	(0.198)	(0.197)	(0.198)
GDP per capita ₍₋₁₎	1.8020***	1.8420***	1.2280**	1.7393***	1.4614***	1.7248***	1.5160***	1.6287***	1.7091***
	(0.589)	(0.583)	(0.546)	(0.582)	(0.563)	(0.579)	(0.564)	(0.573)	(0.579)
Economic growth ₍₋₁₎	-0.0480*	-0.0488*	-0.0475*	-0.0488*	-0.0493*	-0.0498*	-0.0480*	-0.0492*	-0.0488*
	(0.026)	(0.026)	(0.026)	(0.026)	(0.026)	(0.026)	(0.026)	(0.026)	(0.026)
Terms of trade ₍₋₁₎	-0.2272	-0.2700	-0.1309	-0.2496	-0.2605	-0.3036	-0.2713	-0.2847	-0.2834
	(1.627)	(1.641)	(1.648)	(1.636)	(1.629)	(1.633)	(1.634)	(1.633)	(1.635)
Degree of democracy ₍₋₁₎	0.0009	-0.0017	-0.0064	-0.0006	0.0040	0.0020	0.0007	0.0031	0.0019
	(0.027)	(0.027)	(0.027)	(0.027)	(0.027)	(0.027)	(0.027)	(0.027)	(0.027)
Nb. of observations	1,847	1,847	1,847	1,847	1,847	1,847	1,847	1,847	1,847
Countries	71	71	71	71	71	71	71	71	71
Log likelihood	-362.1	-361.6	-371.4	-363.9	-367.5	-363.4	-367.6	-365.3	-364.2
Wald chi2	252.4	250.5	252.6	251.8	252.4	251.4	249.3	251.6	251.9
Rho(LR)	0.376	0.380	0.389	0.384	0.385	0.390	0.399	0.391	0.388
P-value(Rho)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUROC	0.816	0.820	0.803	0.814	0.808	0.816	0.809	0.812	0.813
seAUROC	0.0171	0.0180	0.0190	0.0178	0.0183	0.0178	0.0187	0.0181	0.0179

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 5.3. Robustness Checks: Using Data from Different Sources

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	Civil war	Civil war	Civil	Total		Assassinatio	Terrorism -		Number of	State	Conflict
	(binary)-	score-Polity	violence-	violence-	COW	n of		PTS	Coups		deaths over
	Polity IV	IV	Polity IV	Polity IV		Executive	GTD		d'Etat	fragility	population
Variable in column (X) ₍₋₁₎	0.8967***	1.2454***	0.2466***	3.2782***	1.2276***	1.9710***	0.8284***	0.1941*	-0.0674	5.3679**	0.3518**
	(0.239)	(0.337)	(0.062)	(0.820)	(0.310)	(0.607)	(0.184)	(0.103)	(0.423)	(2.733)	(0.160)
Exchange rate ₍₋₁₎	-0.0846**	-0.0892**	-0.0853**	-0.0860**	-0.1848***	-0.0958**	-0.0943**	-0.0857**	-0.0938**	-0.5146**	-0.0912**
	(0.038)	(0.039)	(0.039)	(0.039)	(0.051)	(0.039)	(0.041)	(0.043)	(0.039)	(0.246)	(0.039)
M2/reserves ₍₋₁₎	0.5684***	0.5555***	0.5603***	0.5536***	0.5007***	0.5763***	0.6137***	0.6528***	0.5646***	0.5459	0.5621***
	(0.123)	(0.123)	(0.123)	(0.124)	(0.141)	(0.124)	(0.128)	(0.131)	(0.122)	(0.337)	(0.124)
Inflation ₍₋₁₎	0.9868***	1.0115***	1.0015***	1.0062***	0.8236***	1.0628***	1.0184***	0.9763***	1.0402***	2.6818***	1.0188***
	(0.169)	(0.168)	(0.170)	(0.171)	(0.187)	(0.173)	(0.173)	(0.179)	(0.170)	(0.910)	(0.172)
Credit growth ₍₋₁₎	0.4463	0.4162	0.3722	0.3741	0.3372	0.3051	0.2782	0.3315	0.2926	0.0636	0.3694
	(0.292)	(0.294)	(0.289)	(0.288)	(0.317)	(0.282)	(0.285)	(0.299)	(0.281)	(0.614)	(0.285)
External debt ₍₋₁₎	0.8192***	0.8288***	0.8222***	0.8368***	0.6302***	0.8286***	0.7155***	0.5986***	0.8507***	0.6295*	0.8085***
	(0.146)	(0.145)	(0.146)	(0.146)	(0.164)	(0.145)	(0.146)	(0.158)	(0.144)	(0.342)	(0.144)
GDP per capita ₍₋₁₎	-0.3039	-0.1790	-0.2186	-0.1923	2.1684***	-0.4121	-0.4042	-0.4382	-0.3935	-1.2565	-0.3925
	(0.318)	(0.323)	(0.327)	(0.330)	(0.540)	(0.320)	(0.319)	(0.343)	(0.316)	(0.917)	(0.317)
Economic growth ₍₋₁₎	-0.0320*	-0.0365*	-0.0271	-0.0265	-0.0345*	-0.0251	-0.0324*	-0.0316	-0.0350*	-0.0154	-0.0324*
	(0.019)	(0.019)	(0.019)	(0.018)	(0.019)	(0.019)	(0.019)	(0.020)	(0.019)	(0.038)	(0.019)
Terms of trade ₍₋₁₎	-0.0406	0.0700	-0.0736	-0.1068	-0.3437	-0.0980	0.1038	0.0933	0.0251	-3.5220	0.0445
	(1.203)	(1.193)	(1.212)	(1.210)	(1.269)	(1.224)	(1.194)	(1.209)	(1.201)	(2.742)	(1.205)
Degree of democracy ₍₋₁₎	-0.0457**	-0.0391**	-0.0422**	-0.0434**	-0.0202	-0.0468**	-0.0541***	-0.0454**	-0.0498***	0.0317	-0.0470**
	(0.019)	(0.019)	(0.019)	(0.019)	(0.022)	(0.019)	(0.019)	(0.019)	(0.019)	(0.048)	(0.019)
Nb. of observations	3,026	3,025	3,025	3,025	1,645	3,025	3,026	2,360	2,973	1,769	3,026
Countries	92	92	92	92	83	92	92	91	92	91	92
Log likelihood	-598.4	-596.9	-597.2	-597.3	-443.7	-601.7	-594.6	-537.5	-603	-243.2	-603.3
Wald chi2	330.3	345.8	327.8	324.2	216.3	319.8	334.2	294.8	331.1	79.53	322.3
Rho(LR)	0.476	0.454	0.476	0.480	0.478	0.489	0.474	0.424	0.459	0.848	0.484
P-value(Rho)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUROC	0.751	0.756	0.752	0.751	0.749	0.736	0.753	0.733	0.740	0.756	0.741
seAUROC	0.0172	0.0174	0.0170	0.0171	0.0189	0.0183	0.0178	0.0193	0.0179	0.0253	0.0177

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 5.4. Robustness Check: Including More Covariates

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
	Conflict	Conflict	Cabinet	Changes in	Anti-	Government	General				
				Effective	Government		Strikes	Assassinations			
	(binary)	(intensity)	changes	Executive	Demonstrations	Crises	Strikes				
				S&P 500 in							
Variable in column (X) ₍₋₁₎	0.9866***	0.5156***	0.3466***	0.2928**	0.0412***	0.2916**	0.1872*	0.0814*			
	(0.244)	(0.170)	(0.125)	(0.147)	(0.016)	(0.132)	(0.101)	(0.044)			
S & P 500 index(-1)	-0.0015***		-0.0014***	-0.0014***	-0.0015***	-0.0014***	-0.0014***	-0.0014***			
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)			
Panel B: Adding US 3-years bond yield											
Variable in column (X) ₍₋₁₎	0.9029***	0.4127**	0.3713***	0.3425**	0.0262	0.3742***	0.2000**	0.0855*			
	(0.246)	(0.170)	(0.130)	(0.152)	(0.018)	(0.133)	(0.098)	(0.045)			
US bond yield(-1)	0.2251***	0.2247***	0.2257***	0.2247***	0.2269***	0.2358***	0.2261***	0.2289***			
	(0.031)	(0.031)	(0.031)	(0.031)	(0.031)	(0.032)	(0.031)	(0.031)			
				nmodity pri							
Variable in column (X) ₍₋₁₎	1.0015***	0.3948**	0.3450***	0.3978***	0.0323**	0.3792**	0.1854*	0.0637			
	(0.254)	(0.175)	(0.130)	(0.154)	(0.016)	(0.149)	(0.100)	(0.043)			
Commodity prices index, t-1	-0.0229***	-0.0222***	-0.0213***	-0.0217***	-0.0223***	-0.0216***	-0.0220***	-0.0222***			
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)			
	Pai	nel D: Addi	ng natural	resource re	nts (% GDP)						
Variable in column (X) ₍₋₁₎	0.9469***	0.4551***	0.3553***	0.3416**	0.0279	0.2775**	0.2299**	0.0723*			
	(0.246)	(0.167)	(0.126)	(0.149)	(0.017)	(0.134)	(0.094)	(0.043)			
Natural resource rents ₍₋₁₎	-0.0356*	-0.0330*	-0.0322*	-0.0337*	-0.0330*	-0.0336*	-0.0316*	-0.0336*			
	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)			
	Panel E	: Adding po	ortfolio inv	estment, ne	et flows (% GDP)					
Variable in column (X) ₍₋₁₎	0.7540***	0.3123*	0.3804***	0.3640**	0.0307*	0.4046***	0.3382***	0.0808*			
	(0.258)	(0.175)	(0.131)	(0.157)	(0.016)	(0.144)	(0.100)	(0.042)			
Portfolio invesment ₍₋₁₎	0.0177	0.0173	0.0180	0.0187	0.0173	0.0146	0.0179	0.0172			
. ,	(0.023)	(0.023)	(0.024)	(0.024)	(0.023)	(0.023)	(0.023)	(0.023)			
		Panel	F: Adding ı	real interest	rate						
Variable in column (X) ₍₋₁₎	0.7762**	0.2566*	0.4334***	0.4262**	0.0295	0.6636***	0.1324	0.0587			
	(0.341)	(0.131)	(0.166)	(0.211)	(0.020)	(0.184)	(0.146)	(0.054)			
Real interest rate ₍₋₁₎	0.0056	0.0054	0.0031	0.0048	0.0038	0.0042	0.0029	0.0044			
. ,	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)			
		Panel G:	Adding cor	ntrol of corr	uption						
Variable in column (X) ₍₋₁₎	0.9095***	0.4487***	0.3622***	0.3277**	0.0295*	0.2892**	0.2224**	0.0788*			
	(0.245)	(0.167)	(0.126)	(0.150)	(0.017)	(0.134)	(0.094)	(0.042)			
Control of corruption ₍₋₁₎	-0.0521	-0.0876	-0.0365	0.0068	-0.0997	-0.1245	-0.1255	-0.1102			
	(0.329)	(0.329)	(0.324)	(0.319)	(0.320)	(0.324)	(0.315)	(0.326)			
		Panel H:	Adding exp	orts diversi	ification						
Variable in column (X) ₍₋₁₎	0.9500***	0.4488***	0.3499***	0.2867*	0.0433*	0.2890**	0.2512**	0.0729*			
	(0.248)	(0.169)	(0.126)	(0.153)	(0.024)	(0.137)	(0.099)	(0.042)			
Exports diversification ₍₋₁₎	-0.3619**	-0.3471**	-0.3754**	-0.3715**	-0.3403**	-0.3586**	-0.3568**	-0.3415**			
()	(0.147)	(0.147)	(0.149)	(0.149)	(0.147)	(0.146)	(0.147)	(0.146)			
				ial developn	, ,	. ,	. ,				
Variable in column (X) ₍₋₁₎	0.9353***	0.3809**	0.4075***	0.3906**	0.0411*	0.4576***	0.2380**	0.0684			
	(0.256)	(0.174)	(0.131)	(0.155)	(0.024)	(0.152)	(0.100)	(0.042)			
Financial development ₍₋₁₎	1.4132	1.6558	1.4800	1.5385	1.5286	1.5748	1.6867	1.6488			
2.2. 2.2.2.2.2(-1)	(1.304)	(1.301)	(1.295)	(1.284)	(1.307)	(1.303)	(1.291)	(1.301)			
Control variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
CONTROL VARIABLES	163	1 63	1 63	1 63	163	1 63	1 63	1 (3			

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 5.5. Robustness Check: Using Alternative Econometric Method

Dependent variable: Banking crisis	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
	Conflict (binary)	Conflict (intensity)	Cabinet changes	Changes in Effective Executive	Anti-Gov. Demonstrations	Government Crises	General Strikes	Assassinations		
Panel A: Using probit model										
Variable in column (X) ₍₋₁₎	0.3132***	0.1570***	0.2163***	0.2328***	0.0117*	0.1593**	0.1246***	0.0538***		
	(0.086)	(0.061)	(0.061)	(0.079)	(0.007)	(0.066)	(0.044)	(0.021)		
		Pa	nel B: Usi	ng logit mo	del					
Variable in column (X) ₍₋₁₎	0.6187***	0.2864**	0.4357***	0.4817***	0.0216*	0.3167***	0.2200***	0.0985***		
	(0.176)	(0.121)	(0.120)	(0.152)	(0.011)	(0.120)	(0.077)	(0.035)		
		Panel C: U	sing prob	it fixed effe	cts model					
Variable in column (X) ₍₋₁₎	0.5607***	0.2775***	0.1917**	0.2192**	0.0167	0.1243	0.1508**	0.0610**		
	(0.153)	(0.106)	(0.078)	(0.095)	(0.012)	(0.089)	(0.064)	(0.030)		
Control variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		

^{*, **,} and *** denote statistical significance at 10 percent, 5 percent, and 1 percent level, respectively. Standard errors are reported in brackets.

Appendix 5.6. Definition of conflict and political instability variables used in robustness checks

- International Country Risk Guide (ICRG). This database contains two important variables that provide an assessment of the risk of instability: internal conflict and external conflict. The index of internal conflict is an assessment of political violence in the country and its actual or potential impact on governance, and comprises three subcomponents: civil war, terrorism, and civil disorder. The index of external conflict is an assessment both of the risk to the incumbent government from foreign action, ranging from non-violent external pressure to violent external pressure. It encompasses three subcomponents: war, cross-border conflict, and foreign pressures. In the paper, we use not only the indices of internal and external conflicts, but also the different subindices. We also compute an aggregate index of conflict, which is the simple average of the internal and external conflict indices.
- Correlates of Wars (COW). In this database, civil war is defined as an armed conflict between an internationally recognized state and (mainly) domestic challengers, able to mount an organized military opposition to the state. A war must have caused more than 1,000 battle-related deaths in total and within at least a three-year period. We define a binary variable taking the value of 1 if the condition is met, and 0 otherwise.
- Political Terror Scale of Amnesty International. This database provides a measure of
 political terror defined as violations of physical integrity rights carried out by states or
 their agents. It refers to state-sanctioned killings, torture, disappearances, and political
 imprisonment. The data are ranged from 1 to 5, with higher values representing
 widespread and systemic violations of civil and political rights where murders,
 disappearances, and torture are a common part of life.
- Global Terrorism Database (GTD) by the National Consortium for the Study of Terrorism and Responses to Terrorism (START) (University of Maryland). Terrorism is defined as the threatened or actual use of illegal force and violence by a non-state actor to attain a political, economic, religious or social goal through fear, coercion or intimidation. In order to be considered as a terrorist incident, 3 conditions should be met: (i) the incident must be intentional: the result of a conscious calculation on the part of a

perpetrator; (ii) the incident must entail some violence or threat of violence, including violence against property or/and against people; and (iii) the perpetrator of the incident should be sub-national actors. We use the number of terrorism-related incidents per year.

- Marshall (2017)'s major episodes of political violence database (Center for Systemic Peace). Major episodes of political violence are defined by the systematic and sustained use of lethal violence by organized groups that result in at least 500 directly-related deaths over the course of the episode. We define a binary variable taking the value of 1 if such event occurs and 0 otherwise. The database also contains an eleven-point scale score (0-10) providing an assessment of the intensity of civil war and civil violence. We also use these two scores and an additional aggregate score for total violence, which is the simple average of the civil war and civil violence scores.
- Marshall and Marshall (2018)'s coup d'état events database (Center for Systemic Peace). We use two variables from this database capturing whether a military coup occurred in the country and whether the ruling executive was assassinated. A coup d'état is defined as a forceful seizure of executive authority and office by a dissident/opposition faction within the country's ruling or political elites that results in a substantial change in the executive leadership and the policies of the prior regime. We generate a binary variable taking the value of 1 if a coup d'état occurs and 0 otherwise. We also define a binary variable equal to 1 if the ruling executive is assassinated and 0 otherwise.
- Marshall and Marshall (2017)'s state fragility index (Center for Systemic Peace). The state
 fragility index is a composite index based on four dimensions: security, political,
 economic and social and measures the degree to which a country is vulnerable to
 political and social violence. The variable ranges between 0 and 25, with higher values
 meaning extreme fragility.

General Conclusion

Tax revenue mobilization emerged as a main tool to finance the 2030 international development agenda since the United Nation General Assembly on Financing for Development in 2015. Alternatively, to the international development assistance – the historical source of financing in developing countries—, which the literature points out some limitations (e.g., perverse effects, volatility, etc.), tax revenues constitute a strong and sustainable source of development financing in emerging markets economies. However, despite of the pressing financing needs, developing countries still face important impediments in raising significant tax revenues to finance essential public expenditures. Developing countries are typically collecting between 10 to 20 percent of GDP, while advanced economies collect on average about the double, 40 percent. In addition to the pressing policy challenge that represents tax revenue mobilization, developing countries face not only a limited access to formal financial services which may be a factor of greater tax revenue collection, but also a rise in violence and internal unrest with devastating macroeconomic consequences.

This thesis was concerned with tax revenue mobilization and the consequences of conflict and political instability on the financial sector in developing countries. More specifically, four important issues are empirically addressed in this thesis: (i) What is the tax effort in Sub-Saharan Africa countries over the past decades? (ii) Does the reliance on diversified tax structure enhance resilience to fiscal risks? (iii) Does greater access to formal financial services in developing countries favors more tax revenue collection? (iv) What are the consequences of the increasing conflicts and political instabilities on the financial sector – particularly, the banking sector– in developing countries?

In Chapter 2, the thesis provided new evidence on tax effort based on a new and original database of tax revenue covering 42 Sub-Saharan African countries over 1980-2015, while replicating some previous empirical works on tax effort. The stochastic frontier analysis shows a tax effort score of 0.57 over the period in SSA countries. This corresponds to an average tax-to-GDP ratio of 13.2, suggesting a low tax effort and the presence of room for more tax revenue collection. In line with previous analyses, the chapter also found that countries' stage of development measured by per-capita income, financial development and trade openness are important factors improving tax revenue in the region, while natural resource endowment and the importance of the agricultural sector reduce unambiguously the non-resource tax-to-GDP ratio. Finally, the replication exercises broadly confirm previous analyses on the determinants

of tax revenue in DCs. Though our results display relative smaller coefficients for some variables suggesting a smaller effect when non-resource tax ratio is used instead of the central government tax revenue.

Chapter 3 was devoted to providing strong evidence that relying on a diversified tax structure contributes to higher tax revenue mobilization and may enhance resilience to fiscal risks. To the best of our knowledge, this chapter is the first of its kind in the empirical literature to propose such a new cross-country tax revenue diversification index (RDI). We find that diversifying the portfolio of tax revenue streams improves revenue collection. In terms of magnitude, the results suggest that a 10 percent increase in the RDI score can yield additional tax revenue of up to 0.2-0.4 percentage points of GDP. The results also evidenced that tax revenue diversification reduces tax revenue volatility, thus bringing to the data long-held views about the prominence of tax revenue diversification for fiscal resilience strengthening. Furthermore, focusing on the potential drivers of the RDI, we find that tax revenue diversification is not just a reflection of economic diversification, but also an outcome of macroeconomic, political and institutional factors. Interestingly, a non-monotone relationship is also at play between the RDI and economic development, with countries' portfolio of tax sources getting more diversified as their economy develops, until a tipping point, where richer countries start finding it harder to diversify further their tax revenue sources.

Chapter 4 empirically assessed the effect unlocking access to financial services on tax capacity in developing countries. We find that greater access to financial services captured by the number of ATMs per 100,000 adults increases government non-resource tax-to-GDP ratio. More precisely, an increase of 1 in the log of the number of ATMs per 100,000 adults increases the total *non-resources* tax ratio by 0.4. This result is driven by household's consumption and business expansion. Greater access to formal financial and banking services favors household's consumption and thereby VAT to collect. Furthermore, easy access to banking services encourages entrepreneurship and *income-generating* activities which are potential opportunities for taxation. The chapter also extends the analysis to tax revenue composition and finds that financial inclusion is associated with greater indirect taxes mobilization, compared direct taxes.

Finally, Chapter 5 analyzed the impact of conflict and political instability on the probability of banking crises. It shows that conflicts and political instability indeed significantly increase the

probability of systemic banking crises in developing countries. In terms of magnitude, the chapter highlights that the odds of a banking crisis are 2.5 times greater when a country is affected by a conflict. Interestingly, the results show that conflicts and political instability in neighboring countries also increase the likelihood of banking crises in a given country. Moreover, the probability of experiencing a banking crisis is 25 percent when the conflict lasts 10 years, against 16.4 percent when it lasts two years. Finally, fiscal crises turned out to be the primary channel through which conflict and political instability lead to a higher likelihood of turmoil of the banking sector.

The analysis of tax effort in the Chapter 2 of the thesis shows that Sub-Saharan Africa countries, and developing countries in general, still have considerable untapped room for substantial tax revenue collection. This calls for urgent adequate fiscal policies and reforms to improve and strengthen the tax system and reinforce compliance.

The chapter 3 brightly provided evidence that diversifying tax revenue sources matters a great deal for improving tax revenue collection and mitigating government revenue volatility. Tax revenue diversification stands as a key factor to strengthen resilience to fiscal risks arising from government revenue volatility, critical to ensure sustainable delivery of public services throughout different phases of the business cycle in developing countries. The current coronavirus pandemic, for instance, requiring additional public expenditures to cope with its adverse social and economic impact, adds further credence to the criticality of relying on a diversified portfolio of tax revenue streams for strengthening fiscal policy resilience to large swings to business cycle fluctuations.

In chapter 4, the thesis points out that unlocking access to formal financial services is an effective means of raising tax revenue in developing countries. This chapter provides useful insights on tax *revenue-harnessing* opportunities from pursuing, implementing and reinforcing financial inclusion strategies and policies for developing economies. Beyond the tax opportunities that financial inclusion offers, it may also serve as a social safety net for the ongoing Covid-19 through supporting populations to withstand better the income losses and the consumption decline.

Chapter 5 reveals that the increasing violence and internal unrest in developing countries characterized by conflicts and political instabilities may have disastrous consequences on the

banking sector, therefore calling for strong and firm policy action from *non-conflict* affected countries to prevent from them. In addition, policymakers should pay great attention to conflicts in neighboring countries even if, they are not *conflict-afflicted* as their banking systems may suffer negative spillovers from their neighbors given that banks operate across borders. Furthermore, once broken out, governments in conflict-affected countries need to address, as quickly as possible, their root causes and try to mitigate their negative effects with the appropriate design and implementation of economic policies. It finally calls for building adequate fiscal space in normal times can reduce the likelihood of fiscal crises and in turn lower the probability of systemic banking crises.

The present thesis also provides and opens avenues for possible interesting extensions and future research. First, in the estimate of tax effort, for instance, one possible extension might be considering the characteristics and performance of tax administrations in developing countries by taking advantage of tax administration information database recently developed, including the International Survey on Revenue Administration (ISORA). Besides, the tax effort estimation provided in the thesis is subject to some caveats in addition to the low coverage of the dataset which only covers SSA countries. Indeed, additional explanatory variables, in particular regarding political regimes, may be taken into account in the estimation, which could then modify the ranking of countries. Fully aware of that, the thesis provides a R-Shiny-based website including several additional variables allowing users not only to download the original dataset but also to replicate our empirical analysis and run their own regressions based on alternative specifications with more covariates. Besides, data on GDP across countries significantly change over the years due to the regular update in the base year necessary to their calculation. Second, future research related to tax revenue diversification could take the analysis further by delving into the causal links behind the empirical regularity observed in the data between per capita GDP and tax revenue diversification, along with its transmission channels. The influence of tax revenue diversification on income inequality as well as on policymakers' leeway for implementing countercyclical fiscal policies is additional interesting avenues for future research.

References

Abadie, Alberto, and Javier Gardeazabal. 2001. "The Economic Costs of Conflict: A Case-Control Study for the Basque Country." Working Paper 8478. Working Paper Series. National Bureau of Economic Research.

Acosta-González, Eduardo, Fernando Fernández-Rodríguez, and Simón Sosvilla-Rivero. 2012. "On Factors Explaining the 2008 Financial Crisis." *Economics Letters*, 115 (2): 215–217.

Acemoglu, Daron. 2005. "Politics and Economics in Weak and Strong States." *Journal of Monetary Economics* 52 (7): 1199–1226.

Acemoglu, Daron, and James A. Robinson. 2006. *Economic Origins of Dictatorship and Democracy*. Cambridge University Press.

Acemoglu, Daron, Davide Ticchi, and Andrea Vindigni. 2010. "A Theory of Military Dictatorships." *American Economic Journal: Macroeconomics* 2 (1): 1–42.

Acemoglu, Daron, Thierry Verdier, and James A. Robinson. 2004. "Kleptocracy and Divide-and-Rule: A Model of Personal Rule." *Journal of the European Economic Association* 2 (2–3): 162–92.

Acemoglu, Daron, and Fabrizio Zilibotti. 1997. "Was Prometheus Unbound by Chance? Risk, Diversification, and Growth." *Journal of Political Economy* 105(4): 709–51.

Afawubo, Komivi, and Samuel Mathey. 2017. "The Effectiveness of Aid on Savings and Investment in Sub-Saharan Africa: Do Volatility and Institutional Quality Matter?" *Applied Economics* 49 (51): 5212–30.

Agbeyegbe, Terence D., Janet Stotsky, and Asegedech WoldeMariam. 2006. "Trade Liberalization, Exchange Rate Changes, and Tax Revenue in Sub-Saharan Africa." *Journal of Asian Economics* 17 (2): 261–284.

Aghion, Philippe, Ufuk Akcigit, Julia Cagé, and William R. Kerr. 2016. "Taxation, Corruption, and Growth." *European Economic Review*, The Economics of Entrepreneurship, 86 (July): 24–51.

Agosin, Manuel R., Roberto Alvarez, and Claudio Bravo-Ortega. 2012. "Determinants of Export Diversification Around the World: 1962–2000." *The World Economy* 35(3): 295–315.

Aigner, Dennis, CA Knox Lovell, and Peter Schmidt. 1977. "Formulation and Estimation of Stochastic Frontier Production Function Models." *Journal of Econometrics* 6 (1): 21–37.

Aisen, Ari, and Francisco José Veiga. 2013. "How Does Political Instability Affect Economic Growth?" *European Journal of Political Economy*, 29: 151–167.

Akanbi, Olusegun Ayodele. 2019. *State Institutions and Tax Capacity: An Empirical Investigation of Causality*. International Monetary Fund.

Akitoby, Bernardin, Anja Baum, Clay Hackney, Olamide Harrison, Keyra Primus, and Veronique Salins. 2018. *Tax Revenue Mobilization Episodes in Emerging Markets and Low-Income Countries: Lessons from a New Dataset*. International Monetary Fund.

Aldasoro, Iñaki, and Mike Seiferling. 2014. *Vertical Fiscal Imbalances and the Accumulation of Government Debt.* 14–209. International Monetary Fund.

Alesina, Alberto, and Eliana La Ferrara. 2005. "Ethnic Diversity and Economic Performance." *Journal of Economic Literature*, 43 (3): 762–800.

Alesina, Alberto, Sule Özler, Nouriel Roubini, and Phillip Swagel. 1996. "Political Instability and Economic Growth." *Journal of Economic Growth*, 1 (2): 189–211.

Alesina, Alberto, and Roberto Perotti. 1995. "Fiscal Expansions and Adjustments in OECD Countries." *Economic Policy* 10 (21): 205–248.

_____. 1996. "Income Distribution, Political Instability, and Investment." *European Economic Review*, 40 (6): 1203–1228.

Alfirman, Luky. 2003. Estimating Stochastic Frontier Tax Potential: Can Indonesian Local Governments Increase Tax Revenues under Decentralization? Center for Economic Analysis, Department of Economics, University of Colorado at Boulder.

Allen, Franklin, Asli Demirguc-Kunt, Leora Klapper, and Maria Soledad Martinez Peria. 2016. "The Foundations of Financial Inclusion: Understanding Ownership and Use of Formal Accounts." *Journal of Financial Intermediation* 27 (July): 1–30.

Amihud, Yakov, and Avi Wohl. 2004. "Political News and Stock Prices: The Case of Saddam Hussein Contracts." *Journal of Banking & Finance* 28 (5): 1185–1200.

Andic, Suphan. 1973. "Tax Problems of Developing Countries." *Public Finance Analysis* 32 (1): 155–59.

Andreoni, James, Brian Erard, and Jonathan Feinstein. 1998. "Tax Compliance." *Journal of Economic Literature* 36 (2): 818–60.

Angelucci, Manuela, Dean Karlan, and Jonathan Zinman. 2015. "Microcredit Impacts: Evidence from a Randomized Microcredit Program Placement Experiment by Compartamos Banco." *American Economic Journal: Applied Economics* 7 (1): 151–82.

Angkinand, Apanard P., and Thomas D. Willett. 2011. "Exchange Rate Regimes and Banking Crises: The Channels of Influence Investigated." *International Journal of Finance & Economics*, 16 (3): 256–274.

Aportela, Fernando. 1998. "Effect of Financial Access on Savings by Low-Income People." MIT Economic Department.

Araujo, Juliana D., Antonio C. David, Carlos van Hombeeck, and Chris Papageorgiou. 2017. "Non-FDI Capital Inflows in Low-Income Countries: Catching the Wave?" *IMF Economic Review* 65 (2): 426–465.

Arezki, Rabah, and Markus Brückner. 2012. "Commodity Windfalls, Democracy and External Debt." *The Economic Journal* 122 (561): 848–866.

Arezki, Rabah, and Kareem Ismail. 2013. "Boom–Bust Cycle, Asymmetrical Fiscal Response and the Dutch Disease." *Journal of Development Economics* 101: 256–267.

Asongu, Simplice A., and Jacinta C. Nwachukwu. 2017. "The Impact of Terrorism on Governance in African Countries." *World Development*, 99: 253–270.

Ashraf, Nava, Dean Karlan, and Wesley Yin. 2010. "Female Empowerment: Impact of a Commitment Savings Product in the Philippines." World Development 38 (3): 333–44.

Atkinson, A. B., and J. E. Stiglitz. 1976. "The Design of Tax Structure: Direct versus Indirect Taxation." *Journal of Public Economics* 6 (1): 55–75.

Attanasio, Orazio, Britta Augsburg, Ralph de Haas, Emla Fitzsimons, and Heike Harmgart. 2014. "Group Lending or Individual Lending? Evidence from a Randomised Field Experiment in Mongolia." Working Paper SP II 2014-303. WZB Discussion Paper.

Auerbach, Alan J. 1985. "The Theory of Excess Burden and Optimal Taxation." In *Handbook of Public Economics*, 1:61–127. Elsevier.

Augsburg, Britta, Ralph De Haas, Heike Harmgart, and Costas Meghir. 2015. "The Impacts of Microcredit: Evidence from Bosnia and Herzegovina." *American Economic Journal: Applied Economics* 7 (1): 183–203.

Auriol, Emmanuelle, and Michael Warlters. 2005. "Taxation Base in Developing Countries." *Journal of Public Economics*, Cornell - ISPE Conference on Public Finance and Development, 89 (4): 625–46.

Azam, Jean-Paul, Shantayanan Devarajan, and Stephen A. O'Connell. 1999. *Aid Dependence Reconsidered*. Vol. 2144. World Bank Publications.

Bahl, Roy W. 1971. "A Regression Approach to Tax Effort and Tax Ratio Analysis." *Staff Papers* 18 (3): 570–612.

———. 1972. "A Representative Tax System Approach to Measuring Tax Effort in Developing Countries." *Staff Papers* 19 (1): 87–124.

Bahl, Roy W., and Richard M. Bird. 2008. "Tax Policy in Developing Countries: Looking Back—and Forward." *National Tax Journal*, 279–301.

Bahl, Roy W., and Jorge Martinez-Vazquez. 2007. *The Property Tax in Developing Countries: Current Practice and Prospects*. Lincoln Institute of Land Policy Cambridge, MA.

———. 2008. "The Determinants of Revenue Performance." in Bahl, Roy W., Jorge Martinez-Vazquez, and Joan M Youngman. Making the Property Tax Work: Experiences in Developing and Transitional Countries. Cambridge: Lincoln Institute of Land Policy, 2008.

Baicker, Katherine, and Jonathan Skinner. 2011. "Health Care Spending Growth and the Future of US Tax Rates." *Tax Policy and the Economy* 25 (1): 39–68.

Banerjee, Abhijit, Esther Duflo, Rachel Glennerster, and Cynthia Kinnan. 2015. "The Miracle of Microfinance? Evidence from a Randomized Evaluation." *American Economic Journal: Applied Economics* 7 (1): 22–53.

Bangko Sentral ng Pilipinas (BSP). 2015. "National Strategy for Financial Inclusion." Manila. Belinga, Vincent, Maximillien Kaffo Melou, and Jean-Pascal Nganou. 2017. Does Oil Revenue Crowd Out Other Tax Revenues? Policy Lessons for Uganda. The World Bank.

Banks, Arthur, and Kenneth A. Wilson. 2019. *Cross-National Time-Series Data Archive*. Databanks International. Jerusalem, Israel.

Barrett, Philip. 2018. *The Fiscal Cost of Conflict: Evidence from Afghanistan 2005-2016.* International Monetary Fund.

Barro, Robert J., and Rachel McCleary. 2003. "Religion and Economic Growth." National Bureau of Economic Research.

Barth, James R., Chen Lin, Ping Lin, and Frank M. Song. 2009. "Corruption in Bank Lending to Firms: Cross-Country Micro Evidence on the Beneficial Role of Competition and Information Sharing." *Journal of Financial Economics*, 91 (3): 361–388.

Bates, Robert H., and Da-Hsiang Donald Lien. 1985. "A Note on Taxation, Development, and Representative Government." *Politics & Society* 14 (1): 53–70.

Battese, G. E., and T. J. Coelli. 1992. "Frontier Production Functions, Technical Efficiency and Panel Data: With Application to Paddy Farmers in India." *Journal of Productivity Analysis* 3 (1): 153–69.

Battese, George E., and Tim J. Coelli. 1988. "Prediction of Firm-Level Technical Efficiencies with a Generalized Frontier Production Function and Panel Data." *Journal of Econometrics* 38 (3): 387–99.

Baunsgaard, Thomas, and Michael Keen. 2010. "Tax Revenue and (or?) Trade Liberalization." *Journal of Public Economics* 94 (9–10): 563–577.

Bayar, Yilmaz, and Marius Gavriletea. 2018. "Financial Inclusion and Economic Growth: Evidence from Transition Economies of European Union." *Journal of International Finance and Economics* 18 (2): 95–100.

Bazzi, Samuel, and Christopher Blattman. 2014. "Economic Shocks and Conflict: Evidence from Commodity Prices." *American Economic Journal: Macroeconomics*, 6 (4): 1–38.

Beck, Thorsten, Asli Demirgüç-Kunt, and Ross Levine. 2006. "Bank Concentration, Competition, and Crises: First Results." *Journal of Banking & Finance* 30 (5): 1581–1603.

———. 2006. "Bank Supervision and Corruption in Lending." *Journal of Monetary Economics*, 53:2131–63.

Beckerman, Paul, and Andrés Solimano. 2002. "Crisis and Dollarization in Ecuador: Stability, Growth, and Social Equity." World Bank Publications no. 14256, The World Bank.

Beim, David O. 2005. "What Triggers a Systemic Banking Crisis." Working paper, Columbia Business School, New York:

Bekaert, Geert, Michael Ehrmann, Marcel Fratzscher, and Arnaud J. Mehl. 2011. "Global Crises and Equity Market Contagion." *The Journal of the American Finance Association*, 69 (3): 2597–2649.

Belinga, Vincent, Maximillien Kaffo Melou, and Jean-Pascal Nganou. 2017. *Does Oil Revenue Crowd Out Other Tax Revenues? Policy Lessons for Uganda*. The World Bank.

Bell, Andrew, and Kelvyn Jones. 2015. "Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data." *Political Science Research and Methods*, 3 (1): 133–153.

Belotti, Federico, and Giuseppe llardi. 2018. "Consistent Inference in Fixed-Effects Stochastic Frontier Models." *Journal of Econometrics* 202 (2): 161–177.

Benedek, Dora, Ernesto Crivelli, Priscilla Muthoora, and Sanjeev Gupta. 2012. "Foreign Aid and Revenue: Still a Crowding Out Effect?", International Monetary Fund Working Paper 12/186, Washington D.C.

Benhabib, Jess, and Aldo Rustichini. 1996. "Social Conflict and Growth." *Journal of Economic Growth* 1 (1): 125–42.

Benedek, Dora, Ernesto Crivelli, Sanjeev Gupta, and Priscilla Muthoora. 2014. "Foreign Aid and Revenue: Still a Crowding-Out Effect?" *FinanzArchiv / Public Finance Analysis* 70 (1): 67–96.

Besley, Timothy, and Torsten Persson. 2009. "The Origins of State Capacity: Property Rights, Taxation, and Politics." *American Economic Review* 99 (4): 1218–44.

——. 2013. "Taxation and Development." In *Handbook of Public Economics*, edited by Alan J. Auerbach, Raj Chetty, Martin Feldstein, and Emmanuel Saez, 5:51–110. Handbook of Public Economics, Vol. 5.

———. 2014. "Why Do Developing Countries Tax So Little?" *Journal of Economic Perspectives* 28 (4): 99–120.

Bird, Richard M. 2007. "Tax Challenges Facing Developing Countries: A Perspective from Outside the Policy Arena." *International Tax Program, Joseph L. Rotman School of Management, University of Toronto.*

———. 2008. "Tax Challenges Facing Developing Countries." *Institute for International Business Working Paper*, no. 9.

Bird, Richard M., and Eric M. Zolt. 2003. "Introduction to Tax Policy Design and Development, Notes for a Course on Practical Issues of Tax Policy in Developing Countries." *World Bank, Washington, DC* 28.

Blattman, Christopher, and Edward Miguel. 2010. "Civil War." *Journal of Economic Literature* 48 (1): 3–57.

Bleaney, Michael, and David Greenaway. 2001. "The Impact of Terms of Trade and Real Exchange Rate Volatility on Investment and Growth in Sub-Saharan Africa." *Journal of Development Economics* 65 (2): 491–500.

Bleaney, Michael, Norman Gemmell, and David Greenaway. 1995. "Tax Revenue Instability, with Particular Reference to Sub-Saharan Africa." *The Journal of Development Studies* 31 (6): 883–902.

Bleaney, Michael, Norman Gemmell, and Richard Kneller. 2001. "Testing the Endogenous Growth Model: Public Expenditure, Taxation, and Growth over the Long Run." *Canadian Journal of Economics* 34 (1): 36–57.

Blundell, Richard, and Stephen Bond. 1998. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models." *Journal of Econometrics* 87 (1): 115–143.

Boadway, Robin, Maurice Marchand, and Pierre Pestieau. 1994. "Towards a Theory of the Direct-Indirect Tax Mix." *Journal of Public Economics* 55 (1): 71–88..

Bornhorst, Fabian, Sanjeev Gupta, and John Thornton. 2009. "Natural Resource Endowments and the Domestic Revenue Effort." *European Journal of Political Economy* 25 (4): 439–446.

Bradley, Michael, Gregg A. Jarrell, and E. Han Kim. 1984. "On the Existence of an Optimal Capital Structure: Theory and Evidence." *The Journal of Finance* 39 (3): 857–78.

Brautigam, Deborah, Odd-Helge Fjeldstad, and Mick Moore, eds. 2008. *Taxation and State-Building in Developing Countries: Capacity and Consent*. Cambridge: Cambridge University Press.

Brewer, John. 1989. *The Sinews of Power: War, Money, and the English State, 1688-1783*. New York: Knopf.

Bruhn, Miriam, and Inessa Love. 2014. "The Real Impact of Improved Access to Finance: Evidence from Mexico." *The Journal of Finance* 69 (3): 1347–76.

Brun, Jean-Francois, Gérard Chambas, and Samuel Guerineau. 2008. "Aide et Mobilisation Fiscale Dans Les Pays En Développement." *CERDI, Working Papers* 21 (January).

Brun, Jean-François, and Maïmouna Diakite. 2016. "Tax Potential and Tax Effort: An Empirical Estimation for Non-Resource Tax Revenue and VAT's Revenue." *Études et Documents 2016/10, CERDI, France.*, 65.

Brun, Jean-Francois., Chambas G., Mansour, M. 2015., "Tax Effort of Developing Countries: An Iternative Measure", Chapter 11 in *Financing Sustainable Development - Addressing Vulnerabilities, Boussichas*, M., Guillaumont, P. (eds.), Ferdi, Economica, Paris, 467 p, pp 205-16

Brückner, Markus, and Antonio Ciccone. 2010. "International Commodity Prices, Growth and the Outbreak of Civil War in Sub-Saharan Africa." *The Economic Journal* 120 (544): 519–534.

Budina, Nina, Andrea Schaechter, Anke Weber, and Tidiane Kinda. 2012. "Fiscal Rules in Response to the Crisis: Toward the 'Next-Generation'Rules: A New Dataset." *IMF Working Papers* 12: 187.

Bulíř, Aleš, and A. Javier Hamann. 2003. "Aid Volatility: An Empirical Assessment." *IMF Staff Papers* 50 (1): 64–89.

Burgess, Robin, and Rohini Pande. 2005. "Do Rural Banks Matter? Evidence from the Indian Social Banking Experiment." *American Economic Review* 95 (3): 780–95.

Burgess, Robin, Rohini Pande, and Grace Wong. 2005. "Banking for the Poor: Evidence from India." *Journal of the European Economic Association* 3 (2–3): 268–78.

Butler, John S., and Robert Moffitt. 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model." *Econometrica: Journal of the Econometric Society*, 761–764.

Büyükkarabacak, Berrak, and Neven T. Valev. 2010. "The Role of Household and Business Credit in Banking Crises." *Journal of Banking & Finance*, 34 (6): 1247–1256.

Caballero, Julián A. 2016. "Do Surges in International Capital Inflows Influence the Likelihood of Banking Crises?" *The Economic Journal* 126 (591): 281–316.

Cadot, Olivier, Céline Carrère, and Vanessa Strauss-Kahn. 2011. "Export Diversification: What's behind the Hump?" *Review of Economics and Statistics* 93 (2): 590–605.

Caldeira, Emilie, Ali Compaore, Alou Adesse Dama, and Grégoire Rota-Graziosi. 2020. "Inter-Ministerial Tax Competition: The Case of Resource Rich Developing Countries." *Working Paper, CERDI, Forthcoming*, February.

_____. 2020. "Tax Effort in Sub-Saharan African Countries: Evidence from a New Dataset." Études et Documents, N° 2, CERDI.

Caldeira, Emilie, and Grégoire Rota-Graziosi. 2019. "The tax effort in Benin: How can tax gaps be reduced?" with Emilie Caldeira, in F. Bourgignon, R. Houssa, J.-P. Platteau and P. Reding, (eds) Benin Institutional Diagnostic, Economic Development & Institutions, Chapter 6. /publications/the-tax-effort-in-benin-how-can-tax-gaps-be-reduced.

Campante, Filipe, and David Yanagizawa-Drott. 2015. "Does Religion Affect Economic Growth and Happiness? Evidence from Ramadan." *The Quarterly Journal of Economics*, 130 (2): 615–658.

Canavire-Bacarreza, Gustavo, Jorge Martinez-Vazquez, and Violeta Vulovic. 2013. "Taxation and Economic Growth in Latin America." IDB working paper series.

Caprio, Gerard, and Jr and Patrick Honohan. 2008. "Banking Crises.". The Institute for International Integration Studies Discussion Paper no. 242.

Caprio, Gerard, and Daniela Klingebiel. 1999. *Bank Insolvencies: Cross-Country Experience*. The World Bank.

Carnahan, Michael. 2015. "Taxation Challenges in Developing Countries." *Asia & the Pacific Policy Studies* 2 (1): 169–82.

Carroll, Deborah A. 2005. "Are State Governments Prepared for Fiscal Crises? A Look at Revenue Diversification during the 1990s." *Public Finance Review* 33 (5): 603–633.

Caruana, Jaime, and Stefan Avdjiev. 2012. "Sovereign Creditworthiness and Financial Stability. An International Perspective." *Banque de France Financial Stability Review* 16 (April): 71–85.

Chamley, Christophe. 1986. "Optimal Taxation of Capital Income in General Equilibrium with Infinite Lives." *Econometrica* 54 (3): 607–22.

Chang, Eui Soon, Elizabeth Gavin, Nikolay Gueorguiev, and Jiro Honda. 2020. "Raising Tax Revenue: How to Get More from Tax Administrations?" *International Monetary Fund*, Working Paper.

Charnes, Abraham, William Cooper, Arie Y. Lewin, and Lawrence M. Seiford. 1997. "Data Envelopment Analysis Theory, Methodology and Applications." *Journal of the Operational Research Society* 48 (3): 332–333.

Chauvet, Lisa, and Patrick Guillaumont. 2009. "Aid, Volatility, and Growth Again: When Aid Volatility Matters and When It Does Not." *Review of Development Economics* 13 (3): 452–63.

Chelliah, Raja J. 1971. "Trends in Taxation in Developing Countries." *Staff Papers (International Monetary Fund)* 18 (2): 254–331.

Chelliah, Raja J., Hessel J. Baas, and Margaret R. Kelly. 1975. "Tax Ratios and Tax Effort in Developing Countries, 1969-71." *Staff Papers (International Monetary Fund)* 22 (1): 187–205.

Chen, Andrew H., and Thomas F. Siems. 2004. "The Effects of Terrorism on Global Capital Markets." *European Journal of Political Economy*, The Economic Consequences of Terror, 20 (2): 349–66.

Chenery, Hollis Burnley. 1979. "Structural Change and Development Policy." Oxford University Press. New York.

Čihák, Martin. 2007. "Systemic Loss: A Measure of Financial Stability." *Czech Journal of conomics and Finance* 57 (1–2): 5–26.

Clemens, Michael A. 2017. "The Meaning of Failed Replications: A Review and Proposal." *Journal of Economic Surveys* 31 (1): 326–42.

Clist, Paul, and Oliver Morrissey. 2011. "Aid and Tax Revenue: Signs of a Positive Effect since the 1980s." *Journal of International Development* 23 (2): 165–180.

Coady, David. 2018. "Creating Fiscal Space." IMF Finance & Development Magazine Vol 55, N. 4.

Coady, David. n.d. "Enhancing Domestic Tax Capacity Is Essential for Strengthening Social Protection and Developing Human Capital," 4.

Collier, Paul. 1999. "On the Economic Consequences of Civil War." *Oxford Economic Papers*, 51 (1): 168–183.

Collier, Paul, and Anke Hoeffler. 1998. "On Economic Causes of Civil War." *Oxford Economic Papers* 50 (4): 563–73.

———. 2004. "Greed and Grievance in Civil War." Oxford Economic Papers 56 (4): 563–95.

Colombi, Roberto, Subal C. Kumbhakar, Gianmaria Martini, and Giorgio Vittadini. 2014. "Closed-Skew Normality in Stochastic Frontiers with Individual Effects and Long/Short-Run Efficiency." *Journal of Productivity Analysis* 42 (2): 123–136.

Compaore, Ali, Montfort Mlachila, Rasmané Ouedraogo, and Sandrine Sourouema. 2020. "The Impact of Conflict and Political Instability on Banking Crises in Developing Countries." International Monetary Fund Working Papers WP/20/94. Washington, D.C.

Compaoré, Ali, Rasmané Ouedraogo, Moussé Sow, and René Tapsoba. 2020. "Fiscal Resilience Building: Insights from a New Tax Revenue Diversification Index." International Monetary Fund Working Papers WP/20/41. Washington, D.C.

Cornwell, Christopher, Peter Schmidt, and Robin C. Sickles. 1990. "Production Frontiers with Cross-Sectional and Time-Series Variation in Efficiency Levels." *Journal of Econometrics* 46 (1–2): 185–200.

Coulibaly, Aïssata, and Urbain Thierry Yogo. 2020. "The Path to Shared Prosperity: Leveraging Financial Services Outreach to Create Decent Jobs in Developing Countries." *Economic Modelling* 87: 131–147.

Cremer, Helmuth, Pierre Pestieau, and Jean-Charles Rochet. 2003. "Capital Income Taxation When Inherited Wealth Is Not Observable." *Journal of Public Economics*, ISPE conference on Public economics and redistribution, 87 (11): 2475–90.

Crivelli, Ernesto, and Sanjeev Gupta. 2014. "Resource Blessing, Revenue Curse? Domestic Revenue Effort in Resource-Rich Countries." *European Journal of Political Economy* 35 (September): 88–101.

Cuberes, David, and Michael Jerzmanowski. 2009. "Democracy, Diversification and Growth Reversals." *The Economic Journal* 119(540): 1270–1302.

Cull, Robert, Tilman Ehrbeck, and Nina Holle. 2014. "Financial Inclusion and Development Recent Impact Evidence." The World Bank.

Cyan, Musharraf, Jorge Martinez-Vazquez, and Violeta Vulovic. 2013. "Measuring Tax Effort Does the Estimation Approach Matter and Should Effort Be Linked to Expenditure Goals?" *ICEPP Working Papers*, January.

Dabla-Norris, Era, and Frederico Lima. 2018. *Macroeconomic Effects of Tax Rate and Base Changes: Evidence from Fiscal Consolidations*. International Monetary Fund.

Dabla-Norris, Era, Yixi Deng, Anna Ivanova, Izabela Karpowicz, D. Filiz Unsal, Eva VanLeemput, and Joyce Wong. 2015. *Financial Inclusion: Zooming in on Latin America*. 15–206. International Monetary Fund.

Dabla-Norris, Era, Yan Ji, Robert Townsend, and D. Filiz Unsal. 2015. *Identifying Constraints to Financial Inclusion and Their Impact on GDP and Inequality: A Structural Framework for Policy.* 15–22. International Monetary Fund.

Davis, E. Philip, Dilruba Karim, and Iana Liadze. 2011. "Should Multivariate Early Warning Systems for Banking Crises Pool across Regions?" *Review of World Economics*, 147 (4):693–716.

Davis, E. Philip, and Mark R. Stone. 2004. "Corporate Financial Structure and Financial Stability." *Journal of Financial Stability*, 1 (1): 65–91.

De Bock, Reinout, and Alexander Demyanets. 2012. "Bank Asset Quality in Emerging Markets: Determinants and Spillovers." IMF Working Paper 12/71. International Monetary Fund.

De Groot, Olaf J. 2010. 'The Spillover Effects of Conflict on Economic Growth in Neighbouring Countries in Africa'. *Defence and Peace Economics*, 21 (2): 149–164.

De Gregorio, José. 1996. "Borrowing Constraints, Human Capital Accumulation, and Growth." *Journal of Monetary Economics* 37 (1): 49–71.

Deaton, Angus. 1981. "Optimal Taxes and the Structure of Preferences." *Econometrica: Journal of the Econometric Society*, 1245–60.

Deaton, Angus, and Ronald I. Miller. 1995. *International Commodity Prices, Macroeconomic Performance, and Politics in Sub-Saharan Africa*. International Finance Section, Department of Economics, Princeton University.

Dehn, Jan. 2000. "Commodity Price Uncertainty and Shocks: Implications for Economic Growth." *The Centre for the Study of African Economies Working Paper Series*, 120.

Demirgüç-Kunt, Asli, and Enrica Detragiache. 1998. The Determinants of Banking Crises-Evidence from Developing and Developed Countries. *IMF Staff Papers*, 45 (1):81–109.

———. 2000. "Monitoring Banking Sector Fragility: A Multivariate Logit Approach." *The World Bank Economic Review*, 14 (2): 287–307.

———. 2005. "Cross-Country Empirical Studies of Systemic Bank Distress: A Survey." *National Institute Economic Review*, 192 (1): 68–83.

Demirguc-Kunt, Asli, Thorsten Beck, and Patrick Honohan. 2007. "Finance for All?: Policies and Pitfalls in Expanding Access." The World Bank.

Demirguc-Kunt, Asli, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden. 2015. *The Global Findex Database 2014: Measuring Financial Inclusion around the World*. Policy Research Working Papers. The World Bank.

Deprins, Dominique, Léopold Simar, and Henry Tulkens. 2006. "Measuring Labor-Efficiency in Post Offices." In *Public Goods, Environmental Externalities and Fiscal Competition*, edited by Parkash Chander, Jacques Drèze, C. Knox Lovell, and Jack Mintz, 285–309. Boston, MA: Springer US.

Depetris Chauvin, Nicolas, and Dominic Rohner. 2009. "The Effects of Conflict on the Structure of the Economy." Verein fur Socialpolitik, Research Committee Development Economics, Proceedings of the German Development Economics Conference, Frankfurt.

Devarajan, Shantayanan, and Dani Rodrik. 1989. "Trade Liberalization in Developing Countries: Do Imperfect Competition and Scale Economies Matter?" *The American Economic Review* 79 (2): 283–287.

Diamond, Peter A., and James A. Mirrlees. 1971. "Optimal Taxation and Public Production I: Production Efficiency." *The American Economic Review* 61 (1): 8–27.

Dornbusch, Rudiger, Ilan Goldfajn, Rodrigo O. Valdés, Sebastian Edwards, and Michael Bruno. 1995. "Currency Crises and Collapses." *Brookings Papers on Economic Activity*, 1995 (2): 219–293.

Duca, Marco Lo, and Tuomas A. Peltonen. 2013. "Assessing Systemic Risks and Predicting Systemic Events." *Journal of Banking & Finance*, 37 (7): 2183–2195.

Duttagupta, Rupa, and Paul Cashin. 2011. "Anatomy of Banking Crises in Developing and Emerging Market Countries." *Journal of International Money and Finance*, 30 (2): 354–376.

Dupas, Pascaline, and Jonathan Robinson. 2013. "Savings Constraints and Microenterprise Development: Evidence from a Field Experiment in Kenya." *American Economic Journal: Applied Economics* 5 (1): 163–92.

Ebeke, Christian Hubert. 2011. "Remittances, Value Added Tax and Tax Revenue in Developing Countries," *Etudes et Documents* n°30: 27, CERDI.

Ebeke, Christian, Mario Mansour, and Grégoire Rota-Graziosi. 2016. "The Power to Tax in Sub-Saharan Africa: LTUs, VATs, and SARAs." Ferdi Working paper P154, June 2016.

Eberhardt, Markus, and Andrea Presbitero. 2018. *Commodity Price Movements and Banking Crises*. International Monetary Fund.

Ebrill, Liam, Michael Keen, Jean-Paul Bodin, and Victoria Summers. 2001. *The Modern VAT*. International Monetary Fund.

Edgeworth, Francis Ysidro. 1897. "The Pure Theory of Taxation." *The Economic Journal* 7 (25): 46–70.

Elhiraika, Adam B., and Michael M. Mbate. 2014. "Assessing the Determinants of Export Diversification in Africa." *Applied Econometrics and International Development* 14(1): 147–60.

Eltony, Nagy. 2001. The Determinants of Tax Effort in Arab Countries. Arab Planning Institute.

_____. 2002. "Measuring Tax Effort in Arab Countries." In . Economic Research Forum for the Arab Countries, Iran & Turkey.

Emran, M. Shahe, and Joseph E. Stiglitz. 2005. "On Selective Indirect Tax Reform in Developing Countries." *Journal of Public Economics* 89 (4): 599–623.

Espinosa-Vega, Marco A., Kazuko Shirono, Hector Carcel Villanova, Esha Chhabra, Bidisha Das, and Yingjie Fan. 2020. "Measuring Financial Access; 10 Years of the IMF Financial Access Survey." 20/08. IMF Departmental Papers / Policy Papers. IMF Departmental Papers / Policy Papers. International Monetary Fund.

Fabrizio, Stefania. 2012. *Managing Global Growth Risks and Commodity Price Shocks: Vulnerabilities and Policy Challenges for Low-Income Countries*. Washington, D.C.: International Monetary Fund.

Fareed, Fozan, Mabel Gabriel, Patrick Lenain, and Julien Reynaud. 2017. "Financial Inclusion and Women Entrepreneurship: Evidence from Mexico." *Documents de travail du Département des Affaires économiques de l'OCDE*, n° 1411, Éditions OCDE, Paris,

Fearon, James D. 2004. "Why Do Some Civil Wars Last so Much Longer than Others?" *Journal of Peace Research* 41 (3): 275–301.

Feger, Thuto, and John Asafu-Adjaye. 2014. "Tax Effort Performance in Sub-Sahara Africa and the Role of Colonialism." *Economic Modelling* 38: 163–174.

Fenochietto, Ricardo, and Carola Pessino. 2013. *Understanding Countries' Tax Effort*. Working Paper WP/13/244. International Monetary Fund.

Fernández-Val, Iván, and Martin Weidner. 2016. "Individual and Time Effects in Nonlinear Panel Models with Large N, T." *Journal of Econometrics*, 192 (1): 291–312.

Filippini, Massimo, and William Greene. 2016. "Persistent and Transient Productive Inefficiency. A Maximum Simulated Likelihood Approach." *Journal of Productivity Analysis* 45 (2): 187–96.

Fosu, Augustin Kwasi. 2002. "Political Instability and Economic Growth: Implications of Coup Events in Sub-Saharan Africa." *American Journal of Economics and Sociology*, 61 (1): 329–348.

Fouejieu, Armand, Anta Ndoye, and Tetyana Sydorenko. 2020. "Unlocking Access to Finance for SMEs: A Cross-Country Analysis." *International Monetary Fund Working Paper 20/55*, March.

Francis, Michael. 2003. "Governance and Financial Fragility: Evidence from a Cross-Section of Countries." Staff Working Paper 2003-34, Bank of Canada.

Fu, Jonathan, Jahel Queralt, and Michele Romano. 2017. "Financial Inclusion and the 2030 Agenda for Sustainable Development: A Missed Opportunity." *Enterprise Development and Microfinance* 28 (3): 200–211.

Furceri, Davide. 2007. "Is Government Expenditure Volatility Harmful for Growth? A Cross-Country Analysis." *Fiscal Studies* 28 (1): 103–120.

Gale, William G., and Andrew A. Samwick. 2016. "Effects of Income Tax Changes on Economic Growth." *Economic Studies*.

Gaspar, Victor, and Laura Jaramillo. 2017a. "Designed for Growth: Taxation and Productivity." *IMF Blog* (blog). April 13, 2017.

———. 2017b. "Designed for Growth: Taxation and Productivity." *IMF Blog* (blog). April 13, 2017.

Gaspar, Victor, and Abebe Aemro Selassie. 2017. "Taxes, Debt and Development: A One-Percent Rule to Raise Revenues in Africa." *IMF Blog, International Monetary Fund, Washington, DC.*

Gaspar, Vitor, Laura Jaramillo, and Philippe Wingender. 2016a. *Political Institutions, State Building, and Tax Capacity: Crossing the Tipping Point*. International Monetary Fund.

———. 2016b. *Tax Capacity and Growth: Is There a Tipping Point?* Working Paper. International Monetary Fund.

Gaspar, Vitor, and Abebe Aemro Selassie. 2017. "Taxes, Debt and Development: A One-Percent Rule to Raise Revenues in Africa." *IMF Blog* (blog). December 5, 2017.

Gates, Scott, Håvard Hegre; Håvard Mokleiv Nygård, and Håvard Strand. 2012. "Development Consequences of Armed Conflict." *World Development*, 40 (9): 1713–1722.

Gavin, Michael, and Ricardo Hausmann. 1996. "The Roots of Banking Crises: The Macroeconomic Context." IDB Working Paper No. 262.

Gbato, Andre. 2017. "Impact of Taxation on Growth in Sub-Saharan Africa: New Evidence Based on a New Data Set." *International Journal of Economics and Finance* 9.

Gentry, William M., and Helen F. Ladd. 1994. "State Tax Structure and Multiple Policy Objectives." *National Tax Journal*, 747–772.

Gérard, François, and Joana Naritomi. 2018. "Value Added Tax in Developing Countries: Lessons from Recent Research." *IGC Growth Brief Series* 15.

Gerling, Kerstin, Paulo A. Medas, Tigran Poghosyan, Juan Farah-Yacoub, and Yizhi Xu. 2017. *Fiscal Crises. Journal of International Money and Finance* 88: 191-207

Gertler, Mark, and Nobuhiro Kiyotaki. 2010. "Financial Intermediation and Credit Policy in Business Cycle Analysis." In *Handbook of Monetary Economics*, 3:547–599. Elsevier.

Ghobarah, Hazem Adam, Paul Huth, and Bruce Russett. 2003. "Civil Wars Kill and Maim People—Long after the Shooting Stops." *American Political Science Review*, 97 (2): 189–202.

Ghosh, Atish R., and Jonathan D. Ostry. 1994. "Export Instability and the External Balance in Developing Countries." *Staff Papers* 41 (2): 214–35.

Ghosh, Atish R., Jonathan D. Ostry, and Mahvash S. Qureshi. 2016. "When Do Capital Inflow Surges End in Tears?" *American Economic Review: Papers & Proceedings*, 106 (5): 581–85."

Gobat, Jeanne, and Kristina Kostial. 2016. "Syria's Conflict Economy." IMF Working Paper 16/123, Washington DC

Goldsmith, Raymond William. 1969. "Financial Structure and Development." New Haven, CT: Yale University Press.

Goldstein, Morris, and Philip Turner. 1996. "Banking Crises in Emerging Economies: Origins and Policy Options." In *Trade Currencies and Finance*, 301–363.

Golub, J. David. 2011. "The Theory of Taxation and Public Economics." *The Journal of the American Taxation Association* 33 (2): 147.

Gordon, Roger, and Wei Li. 2009. "Tax Structures in Developing Countries: Many Puzzles and a Possible Explanation." *Journal of Public Economics* 93 (7): 855–66.

Gnangnon, Sèna Kimm, and Jean-François Brun. 2018. "Impact of Bridging the Internet Gap on Public Revenue Mobilization." *Information Economics and Policy* 43: 23–33.

Grace, Dave, Jane Hwang, and Alfonso Garcia Mora. 2014. "Paraguay-National Financial Inclusion Strategy 2014-2018." The World Bank.

Greene, William. 2005. "Reconsidering Heterogeneity in Panel Data Estimators of the Stochastic Frontier Model." *Journal of Econometrics*, Current developments in productivity and efficiency measurement, 126 (2): 269–303.

Greenwood, Jeremy, and Boyan Jovanovic. 1990. "Financial Development, Growth, and the Distribution of Income." *Journal of Political Economy* 98 (5, Part 1): 1076–1107.

Grigorian, David A. 2003. "On the Determinants of First-Time Sovereign Bond Issues." *IMF Working Papers* 03 (184): 1.

Grigorian, David A., and Hamid Reza Davoodi. 2007. *Tax Potential vs. Tax Effort: A Cross-Country Analysis of Armenia's Stubbornly Low Tax Collection*. Working Paper WP/07/106. International Monetary Fund.

Grossberg, Adam J. 1982. "Metropolitan Industrial Mix and Cyclical Employment Stability." *Journal of Regional Analysis and Policy* 12 (1100-2016–89553): 13–35.

Groves, Harold M., and C. Harry Kahn. 1952. "The Stability of State and Local Tax Yields." *The American Economic Review*, 87–102.

Guérineau, Samuel, and Luc Jacolin. 2014. "L'inclusion Financière En Afrique Subsaharienne: Faits Stylisés et Déterminants." *Revue d'économie Financière*, no. 4: 57–80.

Gurley, John G., and Edward S. Shaw. 1955. "Financial Aspects of Economic Development." *The American Economic Review* 45 (4): 515–38.

Gupta, Abhijit Sen. 2007. "Determinants of Tax Revenue Efforts in Developing Countries." *International Monetary Fund Working Papers* 07 (184): 1.

Gupta, Sanjeev, and George Abed. 2002. *Corruption, Public Investment, and Growth. Governance, Corruption, and Economic Performance*. International Monetary Fund.

Gupta, Sanjeev, and Jianhong Liu. "Tax Revenues in Africa Will Be Insufficient to Finance Development Goals." Center For Global Development. Accessed September 1, 2020.

Gupta, Sanjeev, Benedict Clements, Rina Bhattacharya, and Shamit Chakravarti. 2004. "Fiscal Consequences of Armed Conflict and Terrorism in Low-and Middle-Income Countries." *European Journal of Political Economy*, 20 (2): 403–421.

Gygli, Savina, Florian Haelg, Niklas Potrafke, and Jan-Egbert Sturm. 2019. "The KOF Globalisation Index–Revisited." *The Review of International Organizations* 14 (3): 543–574.

Hamermesh, Daniel S. 2007. "Replication in Economics." *Canadian Journal of Economics* 40 (3): 715–33.

Han, Rui, and Martin Melecky. 2013. *Financial Inclusion for Financial Stability:* Access to Bank Deposits and the Growth of Deposits in the Global Financial Crisis. Policy Research Working Papers. The World Bank.

Hasanov, Rashad, and Prasad Sankar Bhattacharya. 2019. "Do Political Factors Influence Banking Crisis?" *Economic Modelling*, 76: 305–318.

Hausmann, Ricardo, and Liliana Rojas-Suarez. 1996. *Banking Crises in Latin America*. Inter-American Development Bank.

Heady, Christopher. 2001. "Taxation Policy in Low-Income Countries." WIDER Discussion Paper 2001/81. The United Nations University World Institute for Development Economics Research (UNU-WIDER), Helsinki, 22.

Herb, Michael. 2003. "Taxation and Representation." *Studies in Comparative International Development* 38 (3): 3.

Hettich, Walter, and Stanley Winer. 1984. "A Positive Model of Tax Structure." *Journal of Public Economics* 24 (1): 67–87.

Hirschman, A. O. 1964. "The Paternity of an Index." The American Economic Review.

Hjalmarsson, Lennart, Subal C. Kumbhakar, and Almas Heshmati. 1996. "DEA, DFA and SFA: A Comparison." *Journal of Productivity Analysis* 7 (2): 303–27.

Hodler, Roland, and Paul A. Raschky. 2014. "Economic Shocks and Civil Conflict at the Regional Level." *Economics Letters*, 124 (3): 530–533.

Hoffman, Philip T., and Jean-Laurent Rosenthal. 1997. "The Political Economy of Warfare and Taxation in Early Modern Europe: Historical Lessons for Economic Development." In *Frontiers of Institutional Economics*, edited by John N. Droback and John V. C. Nye, 31–55. San Diego, CA: Academic Press.

Honohan, Patrick. 2004a. "Financial Development, Growth and Poverty: How Close Are The Links?" World Bank Policy Research Working Paper 3203.

——. 2004b.	Financial Sector	· Policy and the	Poor:	Selected	Findings	and	Issues.	World	Bank
Working Paper	r, n°.43. Washing	ton, D.C: World	l Bank	•					

———. 2005. *Measuring Microfinance Access: Building on Existing Cross-Country Data*. Policy Research Working Papers. The World Bank.

——. 2006. Household Financial Assets In The Process Of Development. Policy Research Working Papers. The World Bank.

Huang, Chai-Liang. 2019. *The Impacts of Political Instability on Banking Development and Operational Efficiencies*. National Chung Cheng University.

Huang, Chye-Ching, and Nathaniel Frentz. 2014. "What Really Is the Evidence on Taxes and Growth." *Center on Budget and Policy Priorities, Washington, DC*.

Hudson, John. 2015. "Consequences of Aid Volatility for Macroeconomic Management and Aid Effectiveness." *World Development*, Aid Policy and the Macroeconomic Management of Aid, 69 (May): 62–74.

Hudson, John, and Paul Mosley. 2008. "Aid Volatility, Policy and Development." *World Development*, Special Section (pp. 2045-2102). The Volatility of Overseas Aid, 36 (10): 2082–2102.

International Monetary Fund, 2003, "Access to International Capital Markets for First-Time Sovereign Issuers," International Capital Markets Department & Legal and other Departments, November 17, 2003.

———. 2011. "Revenue Mobilization in De	eveloping Countries."	Policy Papers 11 (55)
--	-----------------------	-----------------------

———. 2016. "Diversifying Government Revenue in the GCC: Next Steps", GCC, Annual Meeting of Ministers of Finance and Central Bank Governors, Riyadh, October.

——. 2019a. "Sub-Saharan Africa: Navigating Uncertainty." *Regional Economic Outlook*: World Economic and Financial Surveys, 0258-7440. Washington, DC, October 2019.

——. 2019b. "Sub-Saharan Africa Regional Economic Outlook: Recovery Amid Elevated Uncertainty." Accessed July 11, 2019.

Jackson, Randall W. 1984. "An Evaluation of Alternative Measures of Regional Industrial Diversification." *Regional Studies* 18 (2): 103–12.

Jahan, Sarwat, Jayendu De, Fazurin Jamaludin, Piyaporn Sodsriwiboon, and Cormac Sullivan. 2019. *The Financial Inclusion Landscape in the Asia-Pacific Region: A Dozen Key Findings*. International Monetary Fund.

Jaimovich, Nir, and Sergio Rebelo. 2016. "Nonlinear Effects of Taxation on Growth." *Journal of Political Economy* 125 (1): 265–91.

James, Alexander. 2015. "US State Fiscal Policy and Natural Resources." *American Economic Journal: Economic Policy* 7 (3): 238–57.

Johansson, Åsa, Christopher Heady, Jens Arnold, Bert Brys, and Laura Vartia. 2008. "Taxation and Economic Growth." OECD Economics Department Working Paper 620. OECD Publishing.

Jong-A-Pin, Richard. 2009. "On the Measurement of Political Instability and Its Impact on Economic Growth." *European Journal of Political Economy* 25 (1): 15–29.

Joyce, Joseph P. 2011. "Financial Globalization and Banking Crises in Emerging Markets." *Open Economies Review*, 22 (5): 875–895.

Junquera-Varela, Raul Felix, Marijn Verhoeven, Gangadhar P. Shukla, Bernard Haven, Rajul Awasthi, and Blanca Moreno-Dodson. 2017. *Strengthening Domestic Resource Mobilization: Moving from Theory to Practice in Low-and Middle-Income Countries*. The World Bank.

Kaldor, Nicholas. 1963. "Will Underdeveloped Countries Learn to Tax." Foreign Affairs 41: 41019.

Kaminsky, Graciela L., and Carmen M. Reinhart. 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems." *American Economic Review*, 89 (3): 473–500.

Kaplow, Louis. 2006. "On the Undesirability of Commodity Taxation Even When Income Taxation Is Not Optimal." *Journal of Public Economics* 90 (6): 1235–50.

———. 2010. The Theory of Taxation and Public Economics. Princeton University Press.

Karlan, Dean, and Jonathan Zinman. 2010. "Expanding Credit Access: Using Randomized Supply Decisions to Estimate the Impacts." *The Review of Financial Studies* 23 (1): 433–64.

Kauko, Karlo. 2014. "How to Foresee Banking Crises? A Survey of the Empirical Literature." *Economic Systems*, 38 (3): 289–308.

______. 1996. "Banking and Balance of Payments Crises: Models and Evidence." Board of Governors of the Federal Reserve System Discussion Paper No. 544 (Washington: Board of Governor of the Federal Reserve).

Kharas, Homi. 2008. "Measuring the Cost of Aid Volatility." SSRN Scholarly Paper ID 1238066. Rochester, NY: Social Science Research Network.

———. 2020. "What to Do about the Coming Debt Crisis in Developing Countries." *Brookings* (blog). 2020.

Keen, Michael, and Ben Lockwood. 2006. "Is the VAT a Money Machine?" *National Tax Journal*, 905–928.

Kendrick, M. Slade. 1939. "The Ability-to-Pay Theory of Taxation." *The American Economic Review* 29 (1): 92–101.

Kiendrebeogo, Youssouf, and Alexandru Minea. 2013. "Accès Aux Services Financiers et Réduction de La Pauvreté Dans Les PED." *Revue Économique* 64 (3): 483–493.

Kilby, Nick. 2014. "Does Tax Revenue Diversification Help States Weather Economic Downturns? Evidence from the Great Recession." MPA/MPP Capstone Projects, January.

Kim, Dai-Won, Jung-Suk Yu, and M. Kabir Hassan. 2018. "Financial Inclusion and Economic Growth in OIC Countries." *Research in International Business and Finance* 43 (January): 1–14.

Kinda, Tidiane, Montfort Mlachila, and Rasmané Ouedraogo. 2016. "Commodity Price Shocks and Financial Sector Fragility." *IMF Working Papers* 16 (12): 1.

_____. 2018. "Do Commodity Price Shocks Weaken the Financial Sector?" *The World Economy*, 41 (11).

Klinger, Bailey, and Daniel Lederman. 2011. "Export Discoveries, Diversification and Barriers to Entry." *Economic Systems* 35(1): 64–83.

Klomp, Jeroen. 2010. "Causes of Banking Crises Revisited." *The North American Journal of Economics and Finance*, 21 (1): 72–87.

Knop, Stephen J., and Joaquin L. Vespignani. 2014. "The Sectorial Impact of Commodity Price Shocks in Australia." *Economic Modelling* 42 (October): 257–71.

Koh, Wee Chian, M Ayhan Kose, Peter S Nagle, Franziska L Ohnsorge, and Naotaka Sugawara. n.d. "Debt and Financial Crises," 58.

Kopczuk, Wojciech, and Joel Slemrod. 2006. "Putting Firms into Optimal Tax Theory." *American Economic Review* 96 (2): 130–134.

Koren, Miklós, and Silvana Tenreyro. 2007. "Volatility and Development." *The Quarterly Journal of Economics* 122 (1): 243–87.

———. 2013. "Technological Diversification." American Economic Review 103 (1): 378–414.

Kort, John R. 1981. "Regional Economic Instability and Industrial Diversification in the US." *Land Economics* 57 (4): 596–608.

——. 1991. "A Perspective on the Economic Diversity/Instability Literature: Are We Really Providing Directions and Policy Prescriptions." In 38th North American Meetings of the Regional Science Association International, New Orleans, LA.

Kose, M. Ayhan, Eswar Prasad, Kenneth Rogoff, and Shang-Jin Wei. 2009. "Financial Globalization: A Reappraisal." *IMF Staff Papers*, 56 (1): 8–62.

Kpodar, Kangni R., and Mihasonirina Andrianaivo. 2011. "ICT, Financial Inclusion, and Growth: Evidence from African Countries." *International Monetary Fund Working Paper, WP/11/73*.

Kumar, Manmohan, Emanuele Baldacci, Andrea Schaechter, Carlos Caceres, Daehaeng Kim, Xavier Debrun, Julio Escolano, Jiri Jonas, Philippe Karam, and Irina Yakadina. 2009. "Fiscal Rules—Anchoring Expectations for Sustainable Public Finances." *IMF Staff Paper, Washington DC*.

Kumbhakar, Subal C. 1990. "Production Frontiers, Panel Data, and Time-Varying Technical Inefficiency." *Journal of Econometrics* 46 (1): 201–11.

Kumbhakar, Subal C., and Almas Heshmati. 1995. "Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data, 1976–88." *American Journal of Agricultural Economics* 77 (3): 660–74.

Kumbhakar, Subal C., Gudbrand Lien, and J. Brian Hardaker. 2014. "Technical Efficiency in Competing Panel Data Models: A Study of Norwegian Grain Farming." *Journal of Productivity Analysis* 41 (2): 321–37.

Kumbhakar, Subal C., and Hung-Jen Wang. 2005a. "Estimation of Growth Convergence Using a Stochastic Production Frontier Approach." *Economics Letters* 88 (3): 300–305.

———. 2005b. "Estimation of Growth Convergence Using a Stochastic Production Frontier Approach." *Economics Letters* 88 (3): 300–305.

Kumbhakar, Subal C., Hung-Jen Wang, and Alan P. Horncastle. 2015. *A Practitioner's Guide to Stochastic Frontier Analysis Using Stata*. Cambridge University Press.

Laeven, Luc, and Fabian Valencia. 2018. "Systemic Banking Crises Revisited." IMF Working Paper 18/206, Washington DC.

Lai, Brian, and Clayton Thyne. 2007. "The Effect of Civil War on Education, 1980—97." *Journal of Peace Research*, 44 (3): 277–292.

Lancaster, Tony. 2000. "The Incidental Parameter Problem since 1948." *Journal of Econometrics*, 95 (2): 391–413.

Langford, Ben, and Tim Ohlenburg. 2016. "Tax Revenue Potential and Effort." International Growth Centre Working Paper. 2016.

Le, Tuan Minh. 2003. "Value Added Taxation: Mechanism, Design, and Policy Issues." Course on Practical Issues of Tax Policy in Developing Countries, April 2003. Washington D.C.

Le, Tuan Minh, Blanca Moreno-Dodson, and Nihal Bayraktar. 2012. *Tax Capacity and Tax Effort: Extended Cross-Country Analysis from 1994 to 2009*. Policy Research Working Papers. The World Bank.

Leigh, Andrew, Justin Wolfers, and Eric Zitzewitz. 2003. "What Do Financial Markets Think of War in Iraq?" Working Paper 9587. Working Paper Series. National Bureau of Economic Research.

Lemieux, Thomas, Bernard Fortin, and Pierre Fréchette. 1994. "The Effect of Taxes on Labor Supply in the Underground Economy." *The American Economic Review* 84 (1): 231–54.

Leuthold, Jane H. 1991. "Tax Shares in Developing Economies A Panel Study." *Journal of Development Economics* 35 (1): 173–85.

Levi, Margaret. 1981. "The Predatory Theory of Rule." *Politics & Society* 10 (4): 431–65.

———. 1989. Of Rule and Revenue. University of California Press.

Levine, Ross. 2004. "Finance and Growth: Theory and Evidence." w10766. Cambridge, MA: National Bureau of Economic Research.

Levine, R., and S. Schmukler. 2004. "Internationalization and the Evolution of Corporate Valuations [Z]. University of Minnesota (Carlson School of Management)." Carlson School of Management, University of Minnesota.

Lis, Piotr. 2018. "The Impact of Armed Conflict and Terrorism on Foreign Aid: A Sector-Level Analysis." *World Development,* 110: 283–294.

Loayza, Norman V., Romain Ranciere, Luis Servén, and Jaume Ventura. 2007. "Macroeconomic Volatility and Welfare in Developing Countries: An Introduction." *The World Bank Economic Review* 21 (3): 343–357.

Lotz, Joergen R., and Elliott R. Morss. 1967. "Measuring 'Tax Effort' in Developing Countries." *Staff Papers* 14 (3): 478–499.

——. 1970. "A Theory of Tax Level Determinants for Developing Countries." *Economic Development and Cultural Change* 18 (3): 328–341.

Lusardi, Annamaria, Olivia S. Mitchell, and Vilsa Curto. 2010. "Financial Literacy among the Young." *Journal of Consumer Affairs* 44 (2): 358–380.

Macek, Rudolf. 2015. "The Impact of Taxation on Economic Growth: Case Study of OECD Countries." *Review of Economic Perspectives* 14 (4): 309–328.

Mahoney, Paul G. 2001. "The Common Law and Economic Growth: Hayek Might Be Right." *The Journal of Legal Studies*, 30 (2): 503–525.

Malik, Adeel, and Jonathan RW Temple. 2009. "The Geography of Output Volatility." *Journal of Development Economics* 90(2): 163–78.

Mansour, Mario. 2014. "A Tax Revenue Dataset for Sub-Saharan Africa: 1980-2010." Revue D' Economie Du Développement, Forthcoming.

Mansour, Mario, and Grégoire Rota-Graziosi. 2013. *Tax Coordination, Tax Competition, and Revenue Mobilization in the West African Economic and Monetary Union*. 13–163. International Monetary Fund.

Marshall, Monthy G., Ted Robert Gurr, and Keith Jaggers. 2018. "Political Regime Characteristics and Transitions, 1800-2017." *Center for Systemic Peace*.

Marshall, Monty G. 2017. "Major Episodes of Political Violence (MEPV) and Conflict regions, 1946-2016," Center for Systemic Peace.

Marshall, Monty G. and Donna Ramsey Marshall. 2018. "Coup d'Etat Events, 1946-2017," Center for Systemic Peace.

Marshall, Monty G., and Gabrielle C. Elzinga Marshall. 2017. "Conflict, Governance, and State Fragility. Global Report 2017." Center for Systemic Peace.

Marshall, Monty G. and Ted Robert Gurr., 2018. "Political Regime Characteristics and Transitions, 1800-2017." Center for Systemic Peace.

Martin, Čihák, and Ratna, Sahay. 2018. "Women in Finance: An Economic Case for Gender Equality." *IMF Blog* (blog). September 19, 2018.

Mathonnat, Clement and Alexandru Minea. 2018. "Financial Development and the Occurrence of Banking Crises." *Journal of Banking & Finance*, 96: 344-354.

Mascagni, Giulia, Mick Moore, and Rhiannon McCluskey. 2014. *Tax Revenue Mobilization In Developing Countries: Issues and Challenges*. European Union (Belgium).

McGowan, Patrick J. 2003. "African Military Coups d'Etat, 1956–2001: Frequency, Trends and Distribution." *The Journal of Modern African Studies*, 41 (3): 339–370.

McGuirk, Eoin F. 2013. "The Illusory Leader: Natural Resources, Taxation and Accountability." *Public Choice* 154 (3): 285–313.

McLure, Charles E, Fritz Neumark, and Maria S. Cox. 2019. "Taxation." In Encyclopedia Britannica.

McLaughlin, Glenn E. 1930. "Industrial Diversification in American Cities." *The Quarterly Journal of Economics* 45 (1): 131–49.

McMillan, Margaret, Dani Rodrik, and Íñigo Verduzco-Gallo. 2014. "Globalization, Structural Change, and Productivity Growth, with an Update on Africa." *World Development* 63 (November): 11–32.

McMillan, Margaret S., and Dani Rodrik. 2011. "Globalization, Structural Change and Productivity Growth." National Bureau of Economic Research.

Medina, Leandro, Andrew W. Jonelis, and Mehmet Cangul. 2017. *The Informal Economy in Sub-Saharan Africa: Size and Determinants*. International Monetary Fund.

Meeusen, Wim, and Julien van Den Broeck. 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error." *International Economic Review* 18 (2): 435–44.

Mehrotra, Aaron N., and James Yetman. 2015. "Financial Inclusion-Issues for Central Banks." *BIS Quarterly Review March*.

Mei, Jianping, and Limin Guo. 2004. "Political Uncertainty, Financial Crisis and Market Volatility." *European Financial Management*, 10 (4): 639–657.

Miguel, Edward, Shanker Satyanath, and Ernest Sergenti. 2014. "Economic Shocks and Civil Conflict: An Instrumental Variables Approach." *Journal of Political Economy*, 112 (4): 725-753.

Mirrlees, J. A. 1976. "Optimal Tax Theory: A Synthesis." *Journal of Public Economics* 6 (4): 327–58.

Mishkin, Frederic S. 2007. "Is Financial Globalization Beneficial?" *Journal of Money, Credit and Banking*, 39(2/3): 259-294.

———. 2007. The Economics of Money, Banking, and Financial Markets. Pearson Education.

Montalvo, José G., and Marta Reynal-Querol. 2005. "Ethnic Polarization, Potential Conflict, and Civil Wars." *American Economic Review*, 95 (3): 796–816.

Mitchell, Ken, and III Robert H. Scott. 2019. *Pesos Or Plastic?: Financial Inclusion, Taxation, and Development in South America*. Springer.

Mlachila, Montfort, and Rasmané Ouedraogo. 2020. "Financial Development Curse in Resource-Rich Countries: The Role of Commodity Price Shocks." *The Quarterly Review of Economics and Finance* 76: 84–96.

Morrissey, Oliver. 2015. "Aid and Government Fiscal Behavior: Assessing Recent Evidence." World Development, Aid Policy and the Macroeconomic Management of Aid, 69 (May): 98–105.

Morrissey, Oliver, Wilson Prichard, and Samantha Torrance. 2014. "Aid and Taxation: Exploring the Relationship Using New Data." *ICTD Working Paper 21*.

Mueller, Hannes. 2013. "The Economic Costs of Conflict." Working Paper, International. Growth Centre., London.

Mundlak, Yair. 1978. "On the Pooling of Time Series and Cross Section Data." *Econometrica* 46 (1): 69–85.

Murdoch, James C., and Todd Sandler. 2002. "Economic Growth, Civil Wars, and Spatial Spillovers." *Journal of Conflict Resolution* 46 (1): 91–110.

——. 2004. "Civil Wars and Economic Growth: Spatial Dispersion." *American Journal of Political Science* 48 (1): 138–151.

Murphy, Kevin M., Andrei Shleifer, and Robert W. Vishny. 1993. "Why Is Rent-Seeking so Costly to Growth?" *The American Economic Review* 83(2): 409–14.

Myles, Gareth. 2000. "Taxation and Economic Growth." Fiscal Studies, 28.

Neaime, Simon, and Isabelle Gaysset. 2018. "Financial Inclusion and Stability in MENA: Evidence from Poverty and Inequality." *Finance Research Letters* 24 (March): 230–37.

Neumayer, Eric. 2004. "The Impact of Political Violence on Tourism: Dynamic Cross-National Estimation." *Journal of Conflict Resolution* 48 (2): 259–281.

Newbery, David, and Nicholas Stern. 1987. "The Theory of Taxation for Developing Countries," Oxford University Press, New York.

Neyman, Jerzy, and Elizabeth L. Scott. 1948. "Consistent Estimates Based on Partially Consistent Observations." *Econometrica*, 16 (1): 1–32.

Obstfeld, Maurice. 1994. "Risk-Taking, Global Diversification, and Growth." *The American Economic Review*, 1310–29.

O'Brien, Patrick. 2005. "Fiscal and Financial Preconditions for the Rise of British Naval Hegemony, 1485-1815." Monograph. London, United Kingdom: Department of Economic History, London School of Economics and Political Science. November 2005.

Oakland, William H. 1967. "The Theory of the Value-Added Tax: IA Comparison of Tax Bases." *National Tax Journal* 20 (2): 119–36.

Ostry, Jonathan D. 1991. "Trade Liberalization in Developing Countries: Initial Trade Distortions and Imported Intermediate Inputs." *Staff Papers* 38 (3): 447–479.

Ossowski, Rolando, and Alberto Gonzáles. "Manna from Heaven: The Impact of Nonrenewable Resource Revenues on Other Revenues of Resource Exporters in Latin America and the Caribbean." IDB Working Paper Series, 2012.

Ozili, Peterson K. 2018. "Impact of Digital Finance on Financial Inclusion and Stability." *Borsa Istanbul Review* 18 (4): 329–40.

Oz-Yalaman, Gamze. 2019. "Financial Inclusion and Tax Revenue." *Central Bank Review* 19 (3): 107–13.

Pack, Howard, and Janet Rothenberg Pack. 1990. "Is Foreign Aid Fungible? The Case of Indonesia." *Economic Journal* 100 (399): 188–94.

Papageorgiou, Chris, and Nicola Spatafora. 2012. *Economic Diversification in LICs: Stylized Facts and Macroeconomic Implications*. 12–13. International Monetary Fund.

Pasten, Roberto, and James P. Cover. 2010. "The Political Economy of Unsustainable Fiscal Deficits." *Cuadernos de Economía*, 47 (136):169–189.

Pessino, Carola, and Ricardo Fenochietto. 2010. "Determining Countries' Tax Effort." SSRN Scholarly Paper ID 2140805. Rochester, NY: Social Science Research Network.

Pirttilä, Jukka, and Matti Tuomala. 2001. "On Optimal Non-Linear Taxation and Public Good Provision in an Overlapping Generations Economy." *Journal of Public Economics* 79 (3): 485–501.

Pitt, Mark M, and Lung-Fei Lee. 1981. "The Measurement and Sources of Technical Inefficiency in the Indonesian Weaving Industry." *Journal of Development Economics* 9 (1): 43–64.

Polachek, Solomon W., and Daria Sevastianova. 2012. "Does Conflict Disrupt Growth? Evidence of the Relationship between Political Instability and National Economic Performance." *The Journal of International Trade & Economic Development*, 21 (3): 361–388.

Popov, Alexander A., and Neeltje Van Horen. 2013. "The Impact of Sovereign Debt Exposure on Bank Lending: Evidence from the European Debt Crisis." DNB Working Paper 382.

Powell, Robert. 2004. "Bargaining and Learning While Fighting." *American Journal of Political Science* 48 (2): 344–61.

Prichard, W., A. Cobham, and A. Goodall. 2014. "ICTD Government Revenue Dataset ICTD Working Paper 19." *Institute of Development Studies, Brighton*.

Qureshi, Mahvash Saeed. 2013. "Trade and Thy Neighbor's War." *Journal of Development Economics*, 105: 178–195.

Rajan, Raghuram G. 2010. Fault Lines: How Hidden Fractures Still Threaten the World Economy. REV-Revised. Princeton University Press.

Rajan, Raghuram G., and Luigi Zingales. 2003. "The Great Reversals: The Politics of Financial Development in the Twentieth Century." *Journal of Financial Economics* 69 (1): 5–50.

Raleigh, Clionadh, Andrew Linke, Håvard Hegre, and Joakim Karlsen. 2010. "Introducing ACLED: An Armed Conflict Location and Event Dataset: Special Data Feature." *Journal of Peace Research*, September.

Ramsey, Frank P. 1927. "A Contribution to the Theory of Taxation." *The Economic Journal* 37 (145): 47–61.

Reinhart, Carmen, Morris Goldstein, and Graciela Kaminsky. 2000. "Assessing Financial Vulnerability, an Early Warning System for Emerging Markets: Introduction." Munich Personal RePEc Archive.

Rewilak, Johan. 2017. "The Role of Financial Development in Poverty Reduction." *Review of Development Finance* 7 (2): 169–76.

Roodman, David. 2009. "How to Do Xtabond2: An Introduction to Difference and System GMM in Stata." *The Stata Journal* 9 (1): 86–136.

Rose, Andrew K., and Mark M. Spiegel. 2011. "Cross-Country Causes and Consequences of the Crisis: An Update." *European Economic Review*, 55 (3): 309–324.

Rother, Bjoern, Gaelle Pierre, Davide Lombardo, Risto Herrala, Priscilla Toffano, Erik Roos, Allan G. Auclair, and Karina Manasseh. 2016. "The Economic Impact of Conflicts and the Refugee Crisis in the Middle East and North Africa." Staff Discussion Notes 16/8, International Monetary Fund.

Rigobon, Roberto, and Brian Sack. 2005. "The Effects of War Risk on US Financial Markets." *Journal of Banking & Finance* 29 (7): 1769–89.

Roberts, Toby. 2014. "When Bigger Is Better: A Critique of the Herfindahl-Hirschman Index's Use to Evaluate Mergers in Network Industries." *Pace Law Review* 34 (2): 894–946.

Robinson, James Harvey. 1906. Readings in European History - Volume II. Boston: Ginn.

Rudrani Bhattacharya Ila Patnaik. 2015. *Financial Inclusion, Productivity Shocks, and Consumption Volatility in Emerging Economies*. Policy Research Working Papers. The World Bank.

Sachs, Jeffrey D., and Andrew M. Warner. 2001. "The Curse of Natural Resources." *European Economic Review*, 15th Annual Congress of the European Economic Association, 45 (4): 827–38.

Sahay, Ratna, Martin Čihák, Papa N'Diaye, and Adolfo Barajas. 2015. "Rethinking Financial Deepening: Stability and Growth in Emerging Markets." *Revista de Economía Institucional* 17 (33): 73–107.

Sahay, Ratna, Martin Cihak, Papa N'Diaye, Adolfo Barajas, et al. 2015. "Financial Inclusion: Can It Meet Multiple Macroeconomic Goals?" *Staff Discussion Notes* 15 (17): 1.

Sandmo, Agnar. 2005. "The Theory of Tax Evasion: A Retrospective View." *National Tax Journal*, 643–63.

Sarma, Mandira, and Jesim Pais. 2011. "Financial Inclusion and Development." *Journal of International Development* 23 (5): 613–628.

Scherer, Frederic M., and David Ross. 1990. "Industrial Market Structure and Economic Performance." *University of Illinois at Urbana-Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship*.

Schmidt, Peter, and Robin C. Sickles. 1984. "Production Frontiers and Panel Data." *Journal of Business & Economic Statistics* 2 (4): 367–74.

Schneider, Friedrich, Andreas Buehn, and Claudio E. Montenegro. 2010. "Shadow Economies All over the World: New Estimates for 162 Countries from 1999 to 2007." World Bank Policy Research Working Paper, no. 5356.

Schneider, Gerald, and Vera E. Troeger. 2006. "War and the World Economy: Stock Market Reactions to International Conflicts." *Journal of Conflict Resolution* 50 (5): 623–45.

Schunk, Donald, and Sanela Porca. 2005. "State-Local Revenue Diversification, Stability, and Growth: Time Series Evidence." *Review of Regional Studies* 35 (3): 246–265.

Sekine, Atsushi, and Takayuki Tsuruga. 2018. "Effects of Commodity Price Shocks on Inflation: A Cross-Country Analysis." *Oxford Economic Papers* 70 (4): 1108–35.

Sharma, Dipasha. 2016. "Nexus between Financial Inclusion and Economic Growth." *Journal of Financial Economic Policy*.

Siegel, Paul B., Thomas G. Johnson, and Jeffrey Alwang. 1995. "Regional Economic Diversity and Diversification." *Growth and Change* 26 (2): 261–84.

Simpson, Herbert D. 1939. "The Changing Theory of Property Taxation." *The American Economic Review*, 453–67.

Slemrod, Joel. 1990. "Optimal Taxation and Optimal Tax Systems." *Journal of Economic Perspectives* 4 (1): 157–78.

Slemrod, Joel, and Christian Gillitzer. 2014. Tax Systems. 1st ed. Vol. 1. MIT Press Books.

Solimano, Andrés. 2003. "Governance Crises and the Andean Region: A Political Economy Analysis." Macroeconomía del Desarrollo Serie 23. United Nations Publications.

Starosta de Waldemar, Felipe. 2010. "How Costly Is Rent-Seeking to Diversification: An Empirical Approach."

Stotsky, Janet Gale, and Asegedech WoldeMariam. 1997. *Tax Effort in Sub-Saharan Africa*. Working Paper WP/971107. International Monetary Fund.

Superintendencia de Banca, Seguros y AFP (SBS). 2014. "The Use of Financial Inclusion Data Country Case Study of Peru: Fine-Tuning Regulation Based on Access Indicators." Lima

Sukhtankar, Sandip. 2017. "Replications in Development Economics." *American Economic Review* 107 (5): 32–36.

Sung, Myung Jae, Rajul Awasthi, and Hyung Chul Lee. 2017. *Can Tax Incentives for Electronic Payments Reduce the Shadow Economy? Korea's Attempt to Reduce Underreporting in Retail Businesses*. Policy Research Working Papers. The World Bank.

Suyderhoud, Jack P. 1994. "State-Local Revenue Diversification, Balance, and Fiscal Performance." *Public Finance Quarterly* 22 (2): 168–194.

Svirydzenka, Katsiaryna. 2016a. *Introducing a New Broad-Based Index of Financial Development*. IMF Working Paper, WP/16/05. International Monetary Fund.

———. 2016b. *Introducing a New Broad-Based Index of Financial Development*. International Monetary Fund.

Swank, Duane, and Sven Steinmo. 2002. "The New Political Economy of Taxation in Advanced Capitalist Democracies." *American Journal of Political Science*, 642–55.

Syrquin, Moshe. 1988. "Patterns of Structural Change." *Handbook of Development Economics* 1: 203–73.

Tait, Alan. 1991. Value-Added Tax: Administrative and Policy Issues. International Monetary Fund.

Tait, Alan A., Wilfrid L. M. Grätz, and Barry J. Eichengreen. 1979. "Comparaciones internacionales de tributación entre determinados países en desarrollo, 1972-76." *Staff Papers* 26 (1): 123–56.

Tanzi, Vito. 1977. "Inflation, Lags in Collection, and the Real Value of Tax Revenue." *Staff Papers* 24 (1): 154–167.

——. 1983. *Quantitative Characteristics of the Tax Systems of Developing Countries*. IMF International Monetary Fund.

——. 1992. "Structural Factors and Tax Revenue in Developing Countries: A Decade of Evidence." In Open Economies: Structural Adjustment and Agriculture, Ian Goldin, and L. Alan Winters (Eds.), Cambridge: Cambridge University Press, 267-281.

Tanzi, Vito, and Hamid Davoodi. 1998. "Corruption, Public Investment, and Growth." In *the Welfare State, Public Investment, and Growth*, edited by Hirofumi Shibata and Toshihiro Ihori, 41–60. Tokyo: Springer Japan.

Tanzi, Vito, and Howell H. Zee. 2000. "Tax Policy for Emerging Markets: Developing Countries." *National Tax Journal* 53 (2): 299–322.

Teima, Ghada, Alexander Berthaud, Miriam Bruhn, Olympia De Castro, Mukta Joshi, Melina Mirmulstein, and Andrea Onate. 2010. "Scaling-up SME Access to Financial Services in the Developing World." The World Bank.

Theil, Henri. 1972. "Statistical Decomposition Analysis. With Applications in the Social and Administrative Sciences Number v. 14." Studies in Mathematical and Managerial Economics.', Amsterdam, New York: North-Holland Pub. Co.

Thornton, John. 2014. "Does Foreign Aid Reduce Tax Revenue? Further Evidence." *Applied Economics* 46 (4): 359–373.

Thomas, Alun H., and Juan P. Trevino. *Resource Dependence and Fiscal Effort in Sub-Saharan Africa*. International Monetary Fund, 2013.

Toye, John. 2000. "Fiscal Crisis and Fiscal Reform in Developing Countries." *Cambridge Journal of Economics* 24 (1): 21–44.

———. 1988. "Review of *Review of The Theory of Taxation for Developing Countries*, by David Newbery and Nicholas Stern. *The Economic Journal* 98 (393): 1222–24.

Tress, Ronald C. 1938. "Unemployment and the Diversification of Industry 1." *The Manchester School* 9 (2): 140–52.

Tsionas, Efthymios G., and Subal C. Kumbhakar. 2014. "Firm Heterogeneity, Persistent and Transient Technical Inefficiency: A Generalized True Random-effects Model." *Journal of Applied Econometrics* 29 (1): 110–32.

Von Hagen, Jürgen, and Tai-kuang Ho. 2007. "Money Market Pressure and the Determinants of Banking Crises." *Journal of Money, Credit and Banking*, 39 (5): 1037–1066.

Wacziarg, Romain, and Karen Horn Welch. 2008. "Trade Liberalization and Growth: New Evidence." *The World Bank Economic Review* 22 (2): 187–231.

Wang, Hung-Jen. 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model." *Journal of Productivity Analysis* 18 (3): 241–53.

Wang, Hung-Jen, and Chia-Wen Ho. 2010. "Estimating Fixed-Effect Panel Stochastic Frontier Models by Model Transformation." *Journal of Econometrics* 157 (2): 286–96.

Weinzierl, Matthew. 2018. "The Golden Rule of Taxation." In *Proceedings. Annual Conference on Taxation and Minutes of the Annual Meeting of the National Tax Association*, 111:1–14. JSTOR.

White, Fred C. 1983. "Trade-off in Growth and Stability in State Taxes." *National Tax Journal*, 103–114.

Wilford, Walton Terry. 1965. "State Tax Stability Criteria and The Revenue-Income Elasticity Coefficient Reconsidered." *National Tax Journal* 18 (3): 304–12.

Willard, Kristen L., Timothy W. Guinnane, and Harvey S. Rosen. 1995. "Turning Points in the Civil War: Views from the Greenback Market." Working Paper 5381. Working Paper Series. National Bureau of Economic Research.

Williams, William V., Robert M. Anderson, David O. Froehle, and Kaye L. Lamb. 1973. "The Stability, Growth and Stabilizing Influence of State Taxes." *National Tax Journal*, 267–274.

Wolfers, Justin, and Eric Zitzewitz. 2009. "Using Markets to Inform Policy: The Case of the Iraq War." *Economica* 76 (302): 225–50.

Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. MIT Press.

———. 2002. "Econometric Analysis of Cross Section and Panel Data MIT Press." *Cambridge, MA* 108.

World Bank. 2014. *Global Financial Development Report 2014: Financial Inclusion*. The World Bank.

———. 2014. Introduction to poverty analysis. World Bank WP No 90288 (Washington, DC: World Bank Group).
———. 2017a. The Toll of War: The Economic and Social Consequences of the Conflict in Syria. Washington, DC.: World Bank.
———. 2017b. <i>Domestic Resource Mobilization (DRM) and Illicit Financial Flows</i> . Board Update (English). The World Bank.
———. 2018. "Overview: Financial Inclusion." Washington, DC.
———. 2020. "International Debt Statistics 2020. Washington, DC: World Bank

Yakita, Akira. 2003. "Taxation and Growth with Overlapping Generations." *Journal of Public Economics* 87 (3): 467–87.

Yared, Pierre. 2010. "A Dynamic Theory of War and Peace." *Journal of Economic Theory* 145 (5): 1921–50.

Yohou, Djedje Hermann, and Michael Goujon. 2017. "Reassessing Tax Effort in Developing Countries: A Proposal of a Vulnerability-Adjusted Tax Effort Index (VATEI)." Working Paper P186. FERDI.

Zhang, Quanda, and Alberto Posso. 2019. "Thinking inside the Box: A Closer Look at Financial Inclusion and Household Income." *The Journal of Development Studies* 55 (7): 1616–1631.

Contents

Chapter 1. General Introduction and Overview	1
Chapter 2. Tax Effort in Sub-Saharan African Countries: Evidence from a New	Dataset19
2.1. Introduction	20
2.2. Tax Revenue Dataset for Sub-Saharan Africa over 1980-2015	21
2.3. Brief Literature Review on Tax Effort	
2.4. Empirical Methodology: The Stochastic Frontier Analysis	
2.5. Results	
2.6. Replications	
2.6.1. Replication of Gupta (2007)	
2.6.2. Replication of <i>Fenochietto and Pessino (2013)</i>	
Charles 2. Final Burling B. Halles Harland Commander To Brown a Bird	· · · · · · · · · · · · · · · · · · ·
Chapter 3. Fiscal Resilience Building: Insights from a New Tax Revenue Dive	
3.1. Introduction	62
3.2. Data	
3.2.1. The GFS database	64
3.2.2 Tax revenue components	65
3.2.3. Dealing With Missing Data	
3.3. Construction of the RDI	
3.3.1. Methodological Approach	
3.3.2. Results	
3.3.2.1. Stylized Facts	
3.3.2.2. Geographical Distribution of RDI	/0
3.3.2.3. RDI Over Time	
3.3.3. Putting the RDI in Perspective with Macroeconomic Developments	72
3.4. Drivers of Tax Revenue Diversification: An Econometric Analysis3.5. Impacts of Tax Revenue Diversification	72 73
3.5 Impacts of Tax Revenue Diversification	72 73 75

Chapter 4. Access-for-all to Financial Services: Non-resources Tax Revenue	-harnessing
Opportunities in Developing Countries	96
4.1. Introduction	
4.2. Empirical Methodology and Data	
4.2.1. Econometric Model	
4.2.2. Data and Some Stylized Facts	
4.2. Results	
4.2.1. Baseline results	
4.2.2. Transmission channel	109
4.2.3. Robustness Checks	
4.3. Conclusion	113
Chapter 5: The Impact of Conflicts and Political Instability on Banking	a Crises in
Developing Countries	-
5.1. Introduction	122
5.2. Review of the Literature	
5.3. Data Sources and Stylized Facts	
5.3.1. Data Sources	
5.3.2. Stylized Facts	129
5.4. Empirical Strategy	
5.5. Empirical Results	137
5.5.1. Baseline Results	
5.5.2. Do Conflicts and Political Instability in Neighboring Countries Matter?	142
5.5.3. Duration of Conflict and Political Instability	
5.5.4. Transmission Channels	145
5.6. Robustness Checks	147
5.6.1. Use of Alternative Data Sources	147
5.6.2. Including More Covariates	150
5.6.3. Alternative Econometric Methods	151
5.7. Concluding Remarks	151
General Conclusion	159
References	165
Content	166

List of Tables

Table 2.1. The three-stage Estimation Results	37
Table 2.2. Full Sample Tax Effort-based Ranking (Baseline Specification)	
Table 3.1. Classification of Tax Revenues	
Table 3.2. Descriptive Statistics of Tax Revenues (Percent of GDP)	
Table 3.3. An excerpt of RDI-based Country Ranking	
Table 3.4. Macroeconomic and Structural Drivers of RDI, 2000-2015	
Table 3.5. Macroeconomic and Structural drivers of RDI, by Region and Income Level	
Table 3.6. Political and Institutional Drivers of RDI, 2000-2015	
Table 3.7. Effects of RDI on tax revenue mobilization	
Table 3.8. Effects of RDI on Tax Revenue Volatility	84
Table 4.1. Baseline Results	108
Table 4.2. Transmission Channels	
Table 4.3. Effects of Transmission Channel Variables on Tax Revenue Variable	
Table 4.4. Robustness Check: Adding more Control Variables	112
Table 5.1. Number of Countries in Conflict and Experiencing Banking Crises	130
Table 5.2. Banking and Fiscal Crises in Years of Conflict and Political Instability	
Table 5.3. Baseline Results	
Table 5.4. Baseline Results, by Income Group	
Table 5.5. Effect of Conflict and Political Instability in Neighboring Countries	
Table 5.6. Duration of Conflict and Political Instability	
Table 5.7. Transmission Channels	

List of Figures

Figure 1.1. Tax ratio and trend: DCs Vs Developed Countries	7
Figure 1.2. Tax Revenue Structure	
Figure 1.3. Regional Disparities (average, 1990-2018)	9
Figure 2.1. Tax Revenue (percent of GDP) in SSA Over Time (1980-2015)	22
Figure 2.2. Total Tax Revenue in SSA	
Figure 2.3. Correlation between Total <i>Non-resource</i> Tax Revenue and Covariates	
Figure 2.4. Tax Effort over Time (Average Values)	
Figure 2.5. Evolution of Countries Tax Effort Over Time	
Figure 3.1. Composition of Tax Revenues, 2000-15	
Figure 3.2. RDI by Region, Income Group, Fragility Status and Size (Average Values)	
Figure 3.3. Correlation between Per Capita GDP and RDIRDI	
Figure 3.4. RDI Over Time	
Figure 3.5. Correlation between the RDI and Key Macroeconomic Variables, 2000-2015	73
Figure 4.1. Financial Inclusion Over Time (Average Number of ATMs)	105
Figure 4.2. Non-resource Tax-to-GDP Ratio and ATMs, by Region (Average Values)	
Figure 4.3. Correlation Between the Number of ATMs, Branches and Non-resource Tax	
Figure 5.1. Number of Countries in Conflict	
Figure 5.2. Number of Countries in Conflict and Experiencing Banking Crises	
Figure 5.3. Predicted Probability of a Banking Crisis	139

Abstract:

Drawing essentially on empirical analyses and mainly focusing on developing countries, the present thesis is concerned with tax revenue mobilization (Chapter 2, Chapter 3, and Chapter 4) and conflicts (Chapter 5) and provides key policy messages. Chapter 2 estimates the tax effort in Sub-Saharan Africa (SSA) based on a new and original non-resources tax revenue database over 1980-2015. It finds an average tax effort score of 0.57 over the period in SSA countries, corresponding to an average non-resources tax-to-GDP ratio of 13.2. This result suggests a low tax effort and the existence of room for more tax revenue collection. SSA countries could raise up to 23.2 percent of GDP in taxes in full-use their tax potential through an improved tax system. In Chapter 3, the thesis explores the impact of relying on a diversified tax structure on tax revenue mobilization and the fiscal resilience, while proposing a new and the first cross-country tax revenue diversification index (RDI). Results show that diversifying the portfolio of tax revenue streams improves revenue collection. Interestingly, the results suggest that tax revenue diversification reduces tax revenue volatility, thus bringing to the data long-held views about the prominence of tax revenue diversification for fiscal resilience strengthening. Finally, we find that tax revenue diversification is not just a reflection of economic diversification, but also an outcome of macroeconomic, political and institutional factors. Chapter 4 studies the impact of unlocking access to financial services on tax capacity. Its finds strong evidence that greater access to financial services increases non-resources tax revenue, highlighting tax revenue-harnessing opportunities from a more inclusive financial sector for developing countries. In the fifth and last Chapter, the thesis analyses the impact of conflict and political instability on the probability of crises in the banking sector –a key sector for domestic development financing. It shows that conflicts and political instability indeed significantly increase the probability of systemic banking crises in developing countries. Interestingly, this chapter finds that conflicts and political instability in neighboring countries also increase the likelihood of banking crises in a given country, highlighting the spillover-effects of conflicts and political instability.

Keywords: Tax Effort, Non-resource tax revenue, Sub-Saharan Africa, Revenue Diversification Index (RDI), Fiscal Resilience, Financial Inclusion, Conflict, Political Instability, Developing Countries

Résumé:

Cette thèse s'intéresse à la mobilisation des recettes fiscales principalement dans les pays en développement en s'appuyant sur des analyses empiriques (chapitres 2, 3 et 4). Elle aborde également la question des conflits (chapitre 5) et propose d'importantes recommandations de politiques économiques. Le chapitre 2 évalue l'effort fiscal dans les pays d'Afrique au Sud du Sahara (ASS) entre 1980 et 2015 en utilisant une base de données nouvelle et originale des recettes fiscales (hors ressources naturelles) développée à cet effet. Sur la période considérée, les pays d'Afrique au Sud du Sahara ont enregistré un score moyen d'effort fiscal de 0,57 correspondant à une pression fiscale moyenne de 13,2 pour cent du PIB. Ce résultat révèle un faible effort fiscal dans ces pays et indique l'existence de possibilités d'accroître d'avantage le niveau de recettes fiscales. En utilisant pleinement leur potentiel fiscal, les pays d'Afrique Subsaharienne pourraient mobiliser un ratio de taxe de l'ordre de 23,2 pour cent du PIB. Dans le chapitre 3, la thèse analyse la diversification des recettes fiscales comme, non seulement un facteur de résilience budgétaire, mais aussi un moyen de mobilisation accrue des recettes fiscales. Ce chapitre développe le tout premier indicateur de diversification des recettes fiscales (IDR) couvrant un large échantillon de pays qui puisse exister dans la littérature économique. Les résultats empiriques montrent que la diversification des recettes fiscales accroit significativement la perception des recettes et réduit la volatilité des revenus du gouvernements constituant donc un important facteur de résilience budgétaire. Aussi, l'environnement macroéconomique, politique et institutionnel ainsi que le niveau de développement constituent les principaux déterminants de la diversification des recettes fiscales dans les pays. Le chapitre 4 étudie l'impact de l'accès aux services financiers sur la pression fiscale. Il révèle qu'un plus grand accès aux services financiers améliore considérablement la mobilisation des recettes fiscales mettant ainsi en évidence les opportunités potentielles de revenus fiscaux liées à l'inclusion financière. Dans le cinquième et dernier chapitre, la thèse examine l'impact des conflits et de l'instabilité politique sur l'occurrence de crises dans le secteur bancaire –un secteur clé pour le financement domestique. Les résultats montrent que les conflits et l'instabilité politique alimentent significativement la probabilité de crises bancaires systémiques dans les pays en développement. Fait intéressant, ce chapitre souligne que les conflits et l'instabilité politique dans les pays voisins augmentent également la probabilité de crises bancaires dans un pays donné mettant ainsi en évidence les effets de débordement des conflits.

Mots clés: Effort Fiscal, Recettes Fiscales hors Ressources, Afrique Subsaharienne, Indice de Diversification des Revenus (IDR), Résilience Fiscale, Inclusion Financière, Conflit, Instabilité Politique, Pays en Développement